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• We have learned that for linear systems, the state-space form can be 
described by four sub-matrices A, B, C, and D.

dx/dt = Ax + B(u, t)

y = Cx + D(u, t)

Recap: State-Space Form

x1 x2 u t

dx1/dt X X

dx2/dt X X X

y X

A B

C D



© Dirk Zimmer, January 2023, Slide 3

Robotics and Mechatronics Centre

+

• For the actual dynamics, the matrix A is of primary interest.

dx/dt = Ax

Recap: State-Space Form

x1 x2 u t

dx1/dt X X

dx2/dt X X X

y X

A
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Let us look at the general one-dimensional linear system

dx/dt = ax (with xstart = 1)

Definition:

• a > 0: 
The system is unstable

• a < 0: 
The system is asymptotically stable

• a = 0: 
The system is marginally stable

Stability in 1D Systems
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What about the multi-dimensional case?

dx/dt = Ax

• We can perform an eigenvalue decomposition:

A = QΛQ-1

where Q consists in the eigenvectors and Λ is a diagonal matrix 
containing the eigenvalues λ1, λ2, …, λn.

• The system is asymptotically stable iff all eigenvalues are smaller 
than 0.

• The system is marginaly stable if all eigenvalues are smaller or 
equal than 0 and at least one eigenvaule is 0.

• The system is unstable otherwise.

• For complex eigenvalues, only the real part is of concern.

Stability in nD Systems
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Example: 
A = 

• We can perform an eigenvalue decomposition:

A =

The largest eigenvalue is 2. 
Hence the system is unstable.

Stability in nD Systems
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Example: 
A = 

• This matrix has the complex-conjugate pair of eigenvalues: (i, -i)

• The real part of all eigenvalues 
is zero: Hence the system is
marginally stable. 

Stability in nD Systems
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Example: 
A = 

• This matrix has the complex-conjugate pair of eigenvalues: 
(-√2/2+ √2/2i, -√2/2- √2/2i )

• The real part of all eigenvalues 
is smaller than zero: 
Hence the system is stable. 

Stability in nD Systems

0 1

-1 - √2( )

-1 0 1

-1.0

-0.5

0.0

0.5

1.0

x[2]

x[1]

0 2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
x[1] x[2]



© Dirk Zimmer, January 2023, Slide 9

Robotics and Mechatronics Centre

+Domain of Analytical Stability



© Dirk Zimmer, January 2023, Slide 10

Robotics and Mechatronics Centre

+

Most of our systems have been non-linear. What can we say about 
them?

• For non-linear systems (in general), a global statement on the 
stability cannot be given.

• Indeed, a non-linear system may be stable at one point in state-
space and unstable at another point.

• However, for a potential equilibrium point in state-space we can 
examine the stability locally by performing a linearization of the 
system.

Non-linear systems
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Let us perform a linearization:

• Given the non-linear system in state-space form:

dx/dt = f(x,u,t)

• We can approximate this system around the point (xp, up, tp) by

dx/dt = AΔx + B (Δu, Δt) + f(xp, up, tp)

• where A is formed by the Jacobian of f() at (xp, up, tp) :
(and the same is done to get B)

A = 

Linearization

∂f1/∂x1 ∂f1/∂x2 … ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 … ∂f2/∂xn

… … … …

∂fn/∂x1 ∂fn/∂x2 … ∂fn/∂xn
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Let us look at a simple example: The 
pendulum

• It has two potential points of 
equilibrium:
The lower position (φ = 0)
The upright position (φ = π)

• The pendulum can be described by 
a matrix with non-linear elements:

Linearization of a Pendulum

0         + ω

-sin(φ)∙g/l + -μD/(m∙l2) ω

dφ/dt

dω/dt =

Equilibrium Point

Equilibrium Point

=
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Let us linearize the system at its lower equilibrium (φ = 0):

• Or simply…

with b > 0 and c > 0.

Linearization of a Pendulum

0 1

-c -b

φ

ω

dφ/dt

dω/dt
=

0 1

-g/l -μD/(m∙l2)

φ

ω

dφ/dt

dω/dt
=
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To compute the eigenvalues, we derive the determinant of:

• This yields the characteristic polynomial whose roots are the 
eigenvalues: 

λ2 + bλ + c

• The roots are located at:

-b/2 + ½√(b2 – 4c) and -b/2 - ½√(b2 – 4c)

• Since b>0 and c>0, the roots will be negative in their real parts.

• This equilibrium point is a stable equilibrium

Linearization of a Pendulum

0-λ 1

-c -b- λ
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When we  linearize the pendulum in upright position (φ = π), there occurs 
a switch in sign.

• The coefficient c = (sin(φ)∙g/l)/dφ becomes negative:

c = -g/l

• The roots are still located at:

-b/2 + ½√(b2 – 4c) and -b/2 - ½√(b2 – 4c)

• With c < 0, the discriminant is positive. This means that both roots are 
real values. Also the root -b/2 + ½√(b2 – 4c) will be positive.

• This equilibrium point is unstable.

Linearization of a Pendulum
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Let us analyze the stability of an 
uncontrolled bicycle:

• An ideal rolling bicycle represents a 
non-linear system with non-
holonomic constraints

• The bicycle is known to be (self-) 
stable within a certain velocity range.

• We want to determine this velocity 
range.

Stability Analysis
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First, we create a simple model 
of 3D- bicycle

• The model is built out of the 
usual components.

• There are special models for 
the ideal rolling wheels.

• The driver is included in this 
model and considered to be 
“rigid”.

Stability Analysis
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Let us look at the state-space vector x. In total, we have 10 state variables.

• 7 on the level of position (1 Free Body (1x6) + 3 revolute joints (3x1) – 2 
holonomic contraints for placing the wheels (2) = 7)

• 3 on the level of velocity (1 Free Body (1x6) + 3 revolute joints (3x1) – 2 
holonomic contraints for placing the wheels (2) – 4 non-holonomic 
constraints at the wheel = 3)

Stability Analysis
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Let us look at the linearization matrix A

• Dymola is able to perform a linearization automatically. This saves a 
great deal of work.

• The linearization point is an upright position with a given driving 
velocity.

• Here is a typical example of A:

Stability Analysis
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The complete system is obviously unstable (after all, the bicycle is 
driving…)

• We are only interested to analyze the subsystem that is relevant for 
the driving dynamics. 

• Hence we select the following states:
Steering angle, lean angle, orientation- and lean-angle velocity.

Stability Analysis
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This is only valid, if the driving dynamics are not influenced by the other 
states. 

• For the remaining 5 positional states this is blatantly evident.

• It does not matter where the bicycle is placed or in what direction it 
points. The roll angle of the wheels is also unimportant

Stability Analysis
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Things are tricky for the rolling velocity of the rear wheel (driving velocity) 
It obviously influences the dynamic behavior.

• Although we exclude this state here, it is actually part of the potentially 
stable sub-system.

• All 5 states are sufficient to describe the potential and kinetic energy of 
the system. Hence the rolling velocity cannot depart from the 
equilibrium point when all other states do not. But only if the system is 
non-dissipative and the total amount of energy is conserved.

• And indeed, any kind of friction (dissipation) turns the whole bicycle 
into an unstable system. The bicycle will slow down and fall over.
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Now we can reduce the stability analysis to a 4D subpart.

• And for instance:
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We now linearize the system for different driving velocities and perform 
the eigenvalue analysis
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• The system is stable for driving 
velocities ranging from 6.1 to 10.3 
m/s

• We can use this stability analysis to 
determine the influence of the 
geometry.

• For instance, let us consider the trail 
of the bicycle.

Stability Analysis



Questions ?
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