Virtual Physics Equation-Based Modeling

TUM, December 13, 2022

3D Mechanics, Part I

Dr. Dirk Zimmer
German Aerospace Center (DLR), Robotics and Mechatronics Centre

3D Mechanics

In this lecture, we look at the modeling of 3D mechanical systems.

- 3D mechanical models look superficially just like planar mechanical models. There are additional types of joints, but other than that, there seem to be few surprises.
- Yet, the seemingly similar appearance is deceiving. There are a substantial number of complications that the modeler has to cope with when dealing with 3D mechanics. These are the subject of this lecture.

3D Mechanics

Essentially, there are 3 major difficulties we have to cope with:

1. There are multiple ways to express the orientation of a body in three dimensional space.
2. In planar mechanics, all potential variables could be expressed in one common coordinate system: The inertial system. In 3Dmechanics, such an approach is unfeasible.
3. The set of connector variables contains a redundant set of variables. This causes severe problems for the formulation of kinematic loops.

Orientation

There are 4 major variants to express the orientation of an object in 3D

- The rotation matrix
- Planar rotation
- Cardan angles
- Quaternions

Orientation Matrix R

The rotation matrix \mathbf{R}

- The orientation of an object is completely defined by the coordinate vectors of its body system.
- The relative orientation between two objects can then be described by a orthonormal matrix: the rotation matrix \mathbf{R}.

$$
\mathbf{R}^{-1}=\mathbf{R}^{\top}
$$

- Given the rotational matrix, we can easily transform vectors between different coordinate systems, e. g.,
$\mathbf{R} \boldsymbol{\omega}_{0}=\boldsymbol{\omega}_{\text {bod }}$

Orientation Matrix R

The rotation matrix \mathbf{R}

- The rotational matrix \mathbf{R} is highly redundant.
- Each row vector and each column vector of \mathbf{R} is of length 1 , hence there are 6 constraint equations connecting the 9 matrix elements.
- As expected, there are only 3 degrees of freedom, describing the relative rotation of one coordinate system to another.

$$
\begin{aligned}
& \mathbf{R}^{-1}=\mathbf{R}^{\top} \\
& \|\mathbf{R}\|_{2}=1
\end{aligned}
$$

The Cardan Angles $\left(\varphi_{x}, \varphi_{y}, \varphi_{z}\right)$

DLR

The cardan angles $\left(\varphi_{x}, \varphi_{y}, \varphi_{z}\right)$

- A non-redundant form to describe the orientation are cardan angles.
- This technique decomposes the rotation into three subsequent rotations around predetermined axes.
- In this case:
first x , then y , finally z.

$$
\begin{aligned}
& \mathbf{R}_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{x}\right) & \sin \left(\varphi_{x}\right) \\
0 & -\sin \left(\varphi_{x}\right) & \cos \left(\varphi_{x}\right)
\end{array}\right) \\
& \mathbf{R}_{y}=\left(\begin{array}{ccc}
\cos \left(\varphi_{y}\right) & 0 & -\sin \left(\varphi_{y}\right) \\
0 & 1 & 0 \\
\sin \left(\varphi_{y}\right) & 0 & \cos \left(\varphi_{y}\right)
\end{array}\right) \\
& \mathbf{R}_{z}=\left(\begin{array}{ccc}
\cos \left(\varphi_{z}\right) & \sin \left(\varphi_{z}\right) & 0 \\
-\sin \left(\varphi_{z}\right) & \cos \left(\varphi_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{R}=\mathbf{R}_{\mathbf{z}} \cdot \mathbf{R}_{\mathbf{y}} \cdot \mathbf{R}_{\mathbf{x}}
$$

The Cardan Angles $\left(\varphi_{x}, \varphi_{y}, \varphi_{z}\right)$

The cardan angles $\left(\varphi_{x}, \varphi_{y}, \varphi_{z}\right)$

- Unfortunately, the decomposition into separate yields a singularity at $\varphi_{y}=90^{\circ}$. The other two rotation axes are then aligned and there are infinitely many solutions.
- So cardan angles are only useful, if one can make sure this case won't appear during simulation time.
- The sequence of axis rotation can be chosen arbitrarily. Other sequences are of course possible as well and each valid sequence has a specific point where the systems becomes singular.

$$
\begin{gathered}
\mathbf{R}_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\varphi_{x}\right) & \sin \left(\varphi_{x}\right) \\
0 & -\sin \left(\varphi_{x}\right) & \cos \left(\varphi_{x}\right)
\end{array}\right) \\
\mathbf{R}_{y}=\left(\begin{array}{ccc}
\cos \left(\varphi_{y}\right) & 0 & -\sin \left(\varphi_{y}\right) \\
0 & 1 & 0 \\
\sin \left(\varphi_{y}\right) & 0 & \cos \left(\varphi_{y}\right)
\end{array}\right) \\
\mathbf{R}_{z}=\left(\begin{array}{ccc}
\cos \left(\varphi_{z}\right) & \sin \left(\varphi_{z}\right) & 0 \\
-\sin \left(\varphi_{z}\right) & \cos \left(\varphi_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right) \\
\mathbf{R}=\mathbf{R}_{\mathbf{z}} \cdot \mathbf{R}_{\mathbf{y}} \cdot \mathbf{R}_{\mathbf{x}}
\end{gathered}
$$

The Planar Rotation (n, φ)

The planar rotation (n, φ) :

- Every rotation can be regarded as a planar rotation with the angle φ around a certain axis given by a unit vector n .
- We therefore have 4 variables and one constraint equation for the unit vector.

$$
\mathbf{R}=\mathbf{n n}^{T}+\left(I-\mathbf{n n}^{T}\right) \cos (\varphi)-\tilde{\mathbf{n}} \sin (\varphi)
$$

The Planar Rotation (n, φ)

The planar rotation (n, φ) :

- Unfortunately, also the planar rotation method is not always invertible in a unique fashion. A null rotation does not have a well defined axis of rotation.
- Hence, this method should only be used if the axis of rotation is always known, as in a revolute joint.

$\mathbf{R}=\mathbf{n n}^{T}+\left(I-\mathbf{n n}^{T}\right) \cos (\varphi) \overparen{-\tilde{\mathbf{n}} \sin }(\varphi)$
Matrix notation of the cross product

$$
\begin{gathered}
\mathbf{a} \times \mathbf{b}=\tilde{\mathbf{a}} \mathbf{b} \\
\tilde{\mathbf{a}}=\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right)
\end{gathered}
$$

Quaternions Q

- Quaternions are an extension of complex numbers and offer a robust way to describe any rotation. A quaternion number consists of one real and three imaginary components, denoted by i, j and k .
- The imaginary components can be summarized by a vector u.

$$
Q=c+u i+v j+w k .=c+\mathbf{u}
$$

- The multiplication rules for the imaginary components are as follows:

$$
\begin{array}{lll}
i j=k ; & j i=-k ; & i^{2}=-1 \\
j k=i ; & k j=-i ; & j^{2}=-1 \\
k i=j ; & i k=-j ; & k^{2}=-1
\end{array}
$$

Quaternions Q

- So the product of two quaternions can be written as:

$$
Q Q^{\prime}=(c+\mathbf{u})\left(c^{\prime}+\mathbf{u}^{\prime}\right)=\left(c c^{\prime}-\mathbf{u} \cdot \mathbf{u}^{\prime}\right)+\left(\mathbf{u} \times \mathbf{u}^{\prime}\right)+c \mathbf{u}^{\prime}+c^{\prime} \mathbf{u}
$$

- The complement of a quaternion number is defined to be:

$$
\bar{Q}=c+\overline{\mathbf{u}}=c-\mathbf{u}
$$

- The product of a quaternion number with its complement results in its norm:

$$
|Q|=c^{2}+|\mathbf{u}|^{2}
$$

- A unit quaternion is a quaternion of norm 1.

$$
|Q|=c^{2}+|\mathbf{u}|^{2}=1
$$

Quaternions Q

- According to the trigonometric Pythagoras...

$$
\cos (\varphi / 2)^{2}+\sin (\varphi / 2)^{2}=1
$$

- there is an angle φ for every unit quaternion such that:

$$
c=\cos (\varphi / 2) \text { and }|\mathbf{u}|=\sin (\varphi / 2)
$$

- It is now evident how a unit quaternion can be used to describe an orientation. The idea is related to the planar rotation. The imaginary component \mathbf{u} describes the axis, and the length of the axis describes the rotation angle.
- The rotation matrix is then defined by:

$$
\mathbf{R}=2 \mathbf{u} \mathbf{u}^{T}+2(\tilde{\mathbf{u}} \cdot c)+2 c^{2} \mathbf{I}-\mathbf{I}
$$

Selection of Method

- So which of the four methods shall we apply?
- The answer is: all of them
- The rotational matrix is highly redundant but purely linear.
\rightarrow It is used in the connector
- Cardan angles can be used for a spherical joint if the motion is limited to non-singular (or ill-conditioned) areas.
\rightarrow Free rotational motion, spherical joint
- Planar rotation is used when the rotational axis is known.
\rightarrow Revolute Joint
- Quaternions are the methods that avoids any singularity with the slightest degree of redundancy. (But leads to non-linear equations)
\rightarrow Free rotational motion, spherical joint

Motion in 3D

- In planar mechanics, ω was the derivative of φ.
- In 3D mechanics, this is not so easy anymore. $\boldsymbol{\omega}$ represents a vector.
- $|\omega|$ represents the actual angular velocity
- $\boldsymbol{\omega} /|\boldsymbol{\omega}|$ is the unit-vector of the rotation axis.
- $\boldsymbol{\omega}$ can either be resolved w.r.t. the inertial frame $\left(\boldsymbol{\omega}_{0}\right)$ or w.r.t to the body frame ($\omega_{\text {body }}$).
- The body frame is the coordinate system attached to the body.

Motion in 3D: Rotation Matrix

- The rotational matrix is the one to integrate:

$$
\tilde{\boldsymbol{\omega}}_{0} \mathbf{R}=\mathbf{R} \tilde{\boldsymbol{\omega}}_{b o d y}=\dot{\mathbf{R}}
$$

- This generates 9 differential equations and is thus never used.

Motion in 3D: Planar Rotation

- The rotation matrix \mathbf{R} results out of a planar rotation:

$$
\mathbf{R} \boldsymbol{\omega}_{0}=\boldsymbol{\omega}_{b o d y}=\mathbf{n} \cdot \dot{\varphi}
$$

- 1 differential equations

Motion in 3D: Cardan Angles

- The rotation matrix \mathbf{R} results out of the cardan angles:

$$
\begin{gathered}
\boldsymbol{\omega}_{b o d y}=\dot{\varphi_{z}}+\mathbf{R}_{z} \dot{\varphi_{y}}+\mathbf{R}_{z} \mathbf{R}_{y} \dot{\varphi_{x}} \\
\boldsymbol{\omega}_{0}=\dot{\varphi_{x}}+\mathbf{R}_{x}^{T} \dot{\varphi_{y}}+\mathbf{R}_{x}^{T} \mathbf{R}_{y}^{T} \dot{\varphi_{z}}
\end{gathered}
$$

- 3 differential equations (non-redundant)

Motion in 3D: Quaternions

Robotics and Mechatronics Centre

- The rotation matrix \mathbf{R} results out of the quaternion rotation:

$$
\begin{aligned}
\boldsymbol{\omega}_{\text {body }} & =2\left(\begin{array}{cccc}
c & -w & v & u \\
w & c & -u & v \\
-v & u & c & w
\end{array}\right) \cdot\left(\begin{array}{c}
\dot{c} \\
\dot{u} \\
\dot{v} \\
\dot{w}
\end{array}\right) \\
\boldsymbol{\omega}_{0} & =2\left(\begin{array}{cccc}
c & w & -v & u \\
-w & c & u & v \\
v & -u & c & w
\end{array}\right) \cdot\left(\begin{array}{c}
\dot{c} \\
\dot{u} \\
\dot{v} \\
\dot{w}
\end{array}\right)
\end{aligned}
$$

- 4 differential equations (1 redundant causes dynamic state selection)

Selection of Method

- The choice of a method can severely impact the simulation performance:

- This experiment was simulated 3 times with a different method for the orientation: 1) well chosen cardan angles, 2) badly chosen cardan angles 3) quaternions

Selection of Method

- The choice of a method can severely impact the simulation performance:

- This experiment was simulated 3 times with a different method for the orientation: 1) well-chosen cardan angles, 2) badly chosen cardan angles 3) quaternions

Selection of Method

- The choice of a method can severely impact the simulation performance:

	good cardan angle seq.		quaternions		bad cardan angle seq.	
tolerance	error	steps	error	steps	error	steps
$1.0 \cdot 10^{-4}$	$4.9 \cdot 10^{-4}$	$2.9 \cdot 10^{3}$	$5.0 \cdot 10^{-3}$	$2.6 \cdot 10^{4}$	$1.8 \cdot 10^{-0}$	$5.4 \cdot 10^{4}$
$1.0 \cdot 10^{-6}$	$9.7 \cdot 10^{-6}$	$6.2 \cdot 10^{3}$	$3.1 \cdot 10^{-4}$	$4.8 \cdot 10^{4}$	$2.9 \cdot 10^{-4}$	$9.5 \cdot 10^{4}$
$1.0 \cdot 10^{-8}$	$1.2 \cdot 10^{-7}$	$1.4 \cdot 10^{4}$	$1.1 \cdot 10^{-5}$	$8.4 \cdot 10^{4}$	$3.5 \cdot 10^{-5}$	$2.0 \cdot 10^{5}$
$1.0 \cdot 10^{-10}$	$1.2 \cdot 10^{-7}$	$2.3 \cdot 10^{4}$	$1.1 \cdot 10^{-6}$	$1.4 \cdot 10^{5}$	$3.0 \cdot 10^{-6}$	$4.4 \cdot 10^{5}$

- The choice drastically impacts the computational efficiency and the precision.

Questions?

