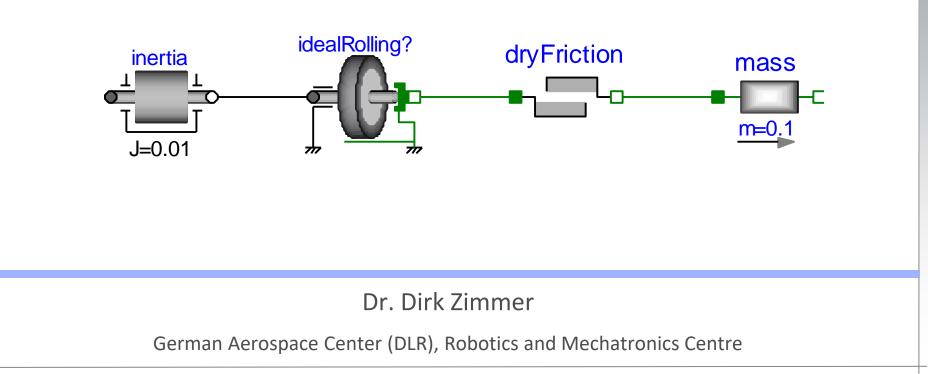
Virtual Physics Equation-Based Modeling

TUM, November 22, 2022

1D-Mechanical Systems



For each physical domain, there is a specific pair of effort / flow variables

Domain	Potential	Flow
Translational Mechanics	Velocity: <i>v</i> [m/s]	Force: <i>f</i> [N]
Rotational Mechanics	Angular Velocity: ω [1/s]	Torque: τ [Nm]
Electrics	Voltage Potential v [V]	Current i [A]
Magnetics	Magnetomotive Force: Θ [A]	Time-derivative of Magnetic Flux: $\dot{\Phi}$ [V]
Hydraulics	Pressure p [Pa]	Volume flow rate V [m ³ /s]
Thermal	Temperature T[K]	Entropy Flow Rate S [J/Ks]
Chemical	Chemical Potential: µ [J/mol]	Molar Flow Rate v [mol/s]
		© Dirk Zimmer, November 202

For the mechanical domain, the first two are relevant:

Domain	Potential	Flow
Translational Mechanics	Velocity: <i>v</i> [m/s]	Force: <i>f</i> [N]
Rotational Mechanics	Angular Velocity: ω [1/s]	Torque: τ [Nm]
Electrics	Voltage Potential v [V]	Current i [A]
Magnetics	Magnetomotive Force: Θ [A]	Time-derivative of Magnetic Flux: $\dot{\Phi}$ [V]
Hydraulics	Pressure p [Pa]	Volume flow rate V [m ³ /s]
Thermal	Temperature T[K]	Entropy Flow Rate S [J/Ks]
Chemical	Chemical Potential: μ [J/mol]	Molar Flow Rate v [mol/s]
		© Dirk Zimmer, November 202

Potential and Flow



- Each node was represented by a pair of variables
 - A **potential** variable
 - v (velocity for translational mechanics)
 - ω (angular velocity for rotational mechanics)
 - and a **flow** variable
 - *f* (force for translational mechanics)
 - $\boldsymbol{\tau}$ (force for rotational mechanics)

Potential and Flow

- For one connection between a set of n nodes, n equations have to be generated.
- n-1 equalities

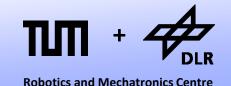
Translational: $v_1 = v_2 = ... = v_n$

Rotational: $\omega_1 = \omega_2 = ... = \omega_n$

• 1 balance equation

Translational: $f_1 + f_2 + \dots + f_n = 0$ Rotational: $\tau_1 + \tau_2 + \dots + \tau_n = 0$

Holonomic Constraints



But the Modelica Standard Library supports different potential variables.

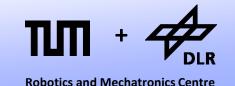
- Not the velocity v but the position s
- Not the angular velocity ω but the angle φ

```
connector Flange_a
  SI.Position s;
  flow SI.Force f
end Flange a;
```

```
connector Flange_a
  SI.Angle phi;
  flow SI.Torque tau;
end Flange a;
```

• Why is this? Is our table incorrect?

Holonomic Constraints



• No, the table is correct but the correct formulation of mechanical system adds another requirement:

The formulation of holonomic constraints!

- Holonomic Constraints are algebraic constraints on the level of position.
- A rigid rod describes a given distance between two flanges. Here two positions are bound with one constraint equation.
- In order, to formulate such equations correctly, the position needs to be part of the connector.

$$s_1 = |s_2| * s_2$$

© Dirk Zimmer, November 2022, Slide 8

Holonomic Constraints: Example

- Let us model a simple system:
- Two masses connected to springs.
- The position s_1 and s_2 are ٠ connected by the following holonomic constraint:

f1

constraint

f2

Robotics and Mechatronics Centre

7777

© Dirk Zimmer, November 2022, Slide 9

Holonomic Constraints: Example

• The constraint on positional level:

 $\mathbf{s}_1 = |\mathbf{s}_2| \cdot \mathbf{s}_2$

• implies for the velocity:

 $v_1 = 2 |s_2| \cdot v_2$

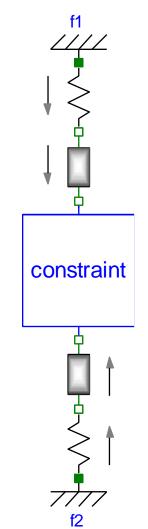
• Power conservation states

 $\mathbf{v}_1 \cdot \mathbf{f}_1 + \mathbf{v}_2 \cdot \mathbf{f}_2 = \mathbf{0}$

• or

 $f_1 \cdot 2 |s_2| + f_2 = 0$

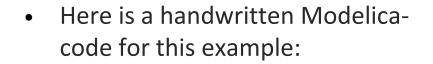
thanks to Edo Drenth for the power analysis



Robotics and Mechatronics Centre

© Dirk Zimmer, November 2022, Slide 10

Holonomic Constraints: Example



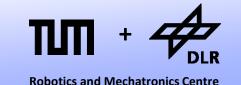
- The two variables s1_int and s2_int are used to formulate the constraints.
- On the next slide you see the simulation result (the positions of the two masses).

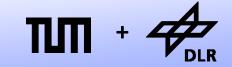
```
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
```

```
Real s1_int;
Real s2_int;
equation
v1 = der(s1);
v2 = der(s2);
```

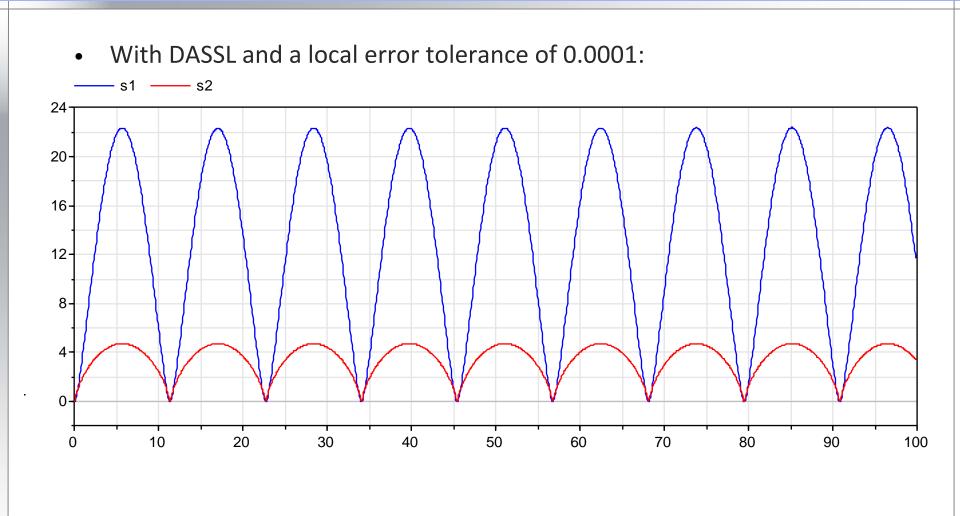
```
v2 = der(s2);
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f*abs(s2_int)*2
= m2*der(v2);
```

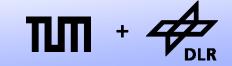
```
s1 = s1_int;
s2 = s2_int;
s1_int = abs(s2_int)*s2_int;
end TwoSpringsWithConstraint;
```



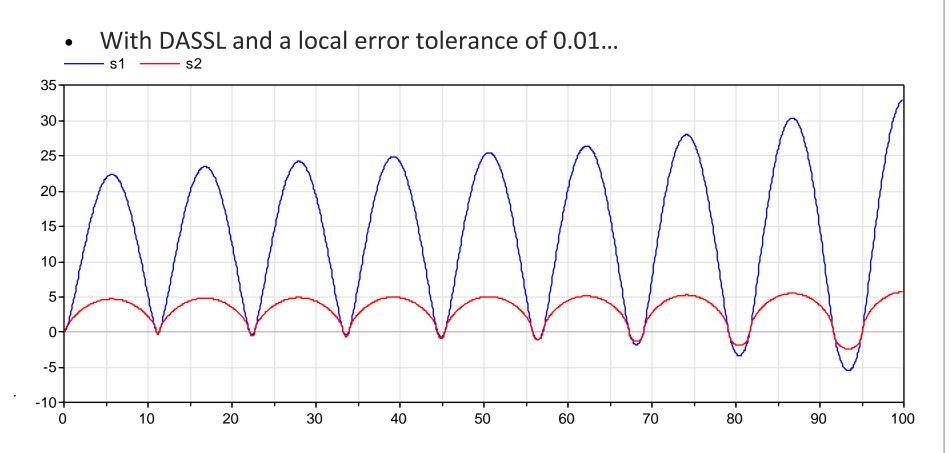


Robotics and Mechatronics Centre



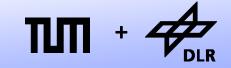


Robotics and Mechatronics Centre

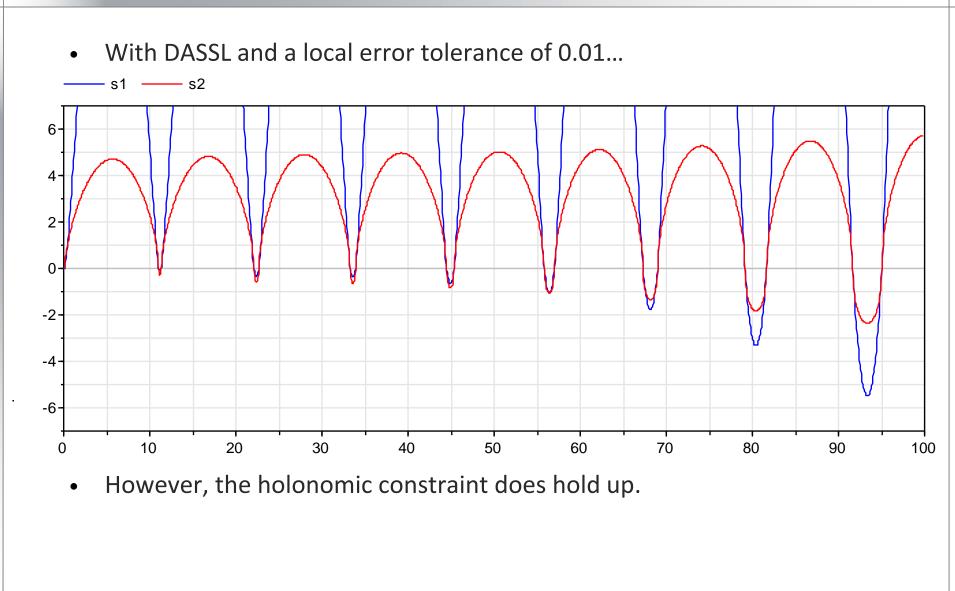


• ... the conservation of energy is violated by numerical integration.

© Dirk Zimmer, November 2022, Slide 12



Robotics and Mechatronics Centre



 But couldn't we formulate the same system, using just the velocities v1 and v2 instead of the positions s1 and s2?

- We could formulate s1_int and s2_int as integrals for v1 and v2.
- Here is why not: (using DASSL with tolerance 0.01):

```
model TwoSpringsWithConstraint
  Real s1;
  Real s2;
  Real v1;
  Real v2;
  Real f;
  parameter Real m1 = 10;
  parameter Real m2 = 2;
  Real s1 int;
  Real s2 int;
equation
  v1 = der(s1);
  v2 = der(s2);
  -1*s1 + f = m1*der(v1);
  -20*(s2-5) - f*abs(s2 int)*2
   = m2*der(v2);
  v1 = der(s1 int);
```

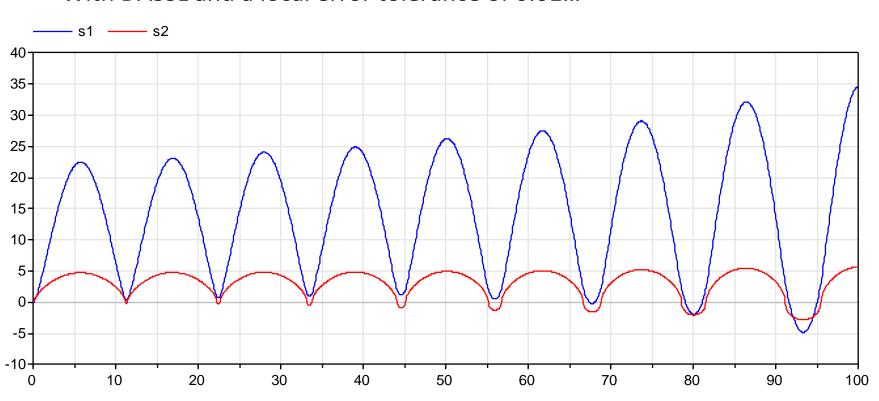
s1 int = abs(s2 int)*s2 int;

end TwoSpringsWithConstraint;

v2 = der(s2 int);

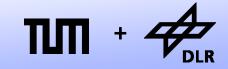


Robotics and Mechatronics Centre

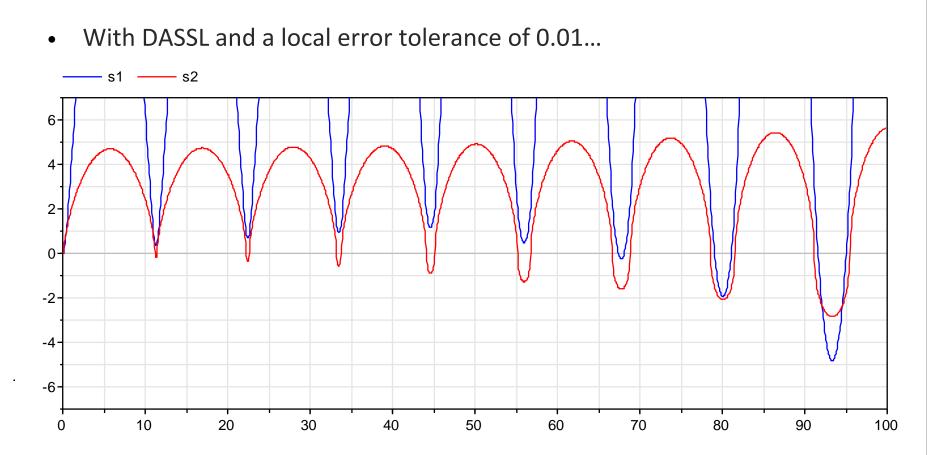


• With DASSL and a local error tolerance of 0.01...

• ... the error has gotten worse and...



Robotics and Mechatronics Centre



- ...the holonomic constraint is lost.
- There is now a shift between the bodies.

- What has happened? Why does the system behave differently?
- Since s1 and s1_int are not algebraically coupled, they are separately integrated.
- The same holds for s2 and s2_int.
- Hence, the holonomic constraints becomes subject to an increasing numerical integration error.
- This can drastically change the systems behavior.

```
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
Real s1_int;
Real s2_int;
```

equation

```
v1 = der(s1);
v2 = der(s2);
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f*abs(s2_int)*2
= m2*der(v2);
```

```
v1 = der(s1_int);
v2 = der(s2_int);
s1_int = abs(s2_int)*s2_int;
end TwoSpringsWithConstraint;
```


© Dirk Zimmer, November 2022, Slide 18

Holonomic Constraints: Example

```
    What has happened? Why does
the system behave differently?
```

- Since s1 and s1_int are not algebraically coupled, they are separately integrated.
- The same holds for s2 and s2_int.
- Hence, the holonomic constraints becomes subject to an increasing numerical integration error.
- This can drastically change the systems behavior.
- So... DON'T!

```
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
Real s1_int;
Real s2_int;
```

```
equation
```

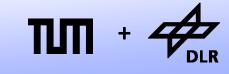
```
v1 = der(s1);
v2 = der(s2);
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f*abs(s2_int)*2
= m2*der(v2);
```

s1 int = abs(s2 int) * s2 int;

end TwoSpringsWithConstraint;

der(slint);

 $v^2 = der(s^2 int);$



Holonomic Constraints

anical components, this means that we have to use

- For our mechanical components, this means that we have to use positions as potential variables:
- Each node was represented by a pair of variables

A potential variable

s (position for translational mechanics)

 φ (angle for rotational mechanics)

and a **flow** variable

f (force for translational mechanics)

 τ (force for rotational mechanics)

Potential and Flow

- We see that the new potential equations imply the old ones:
- n-1 equalities

Translational: $s_1 = s_2 = ... = s_n$ implies $v_1 = v_2 = ... = v_n$ Rotational: $\varphi_1 = \varphi_2 = ... = \varphi_n$ implies $\omega_1 = \omega_2 = ... = \omega_n$

• 1 balance equation

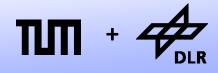
Translational: $f_1 + f_2 + \dots + f_n = 0$ Rotational: $\tau_1 + \tau_2 + \dots + \tau_n = 0$

The information about the energy flow is still contained in our connector variables!

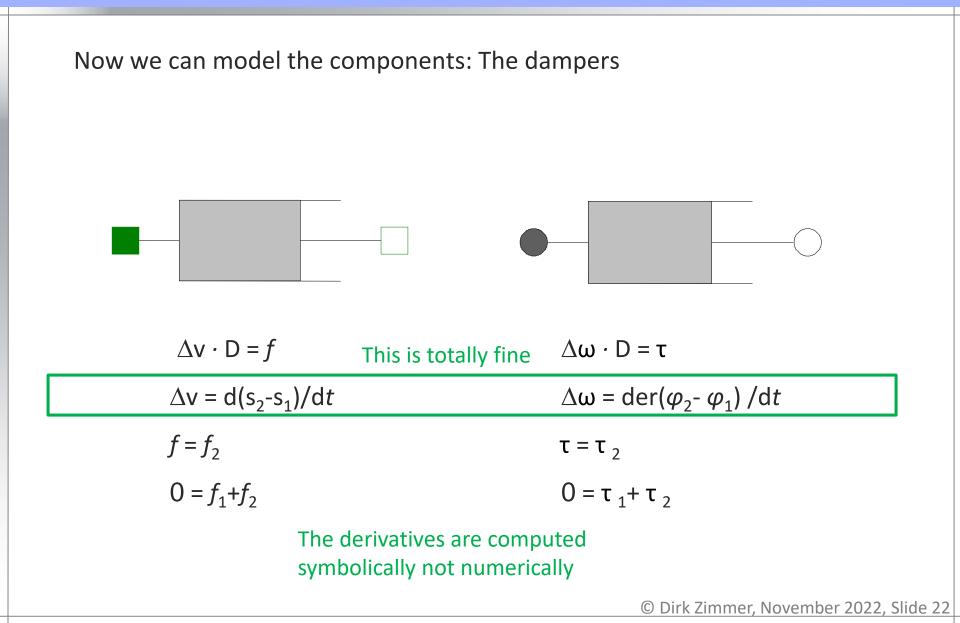
Robotics and Mechatronics Centre

 $\Delta v \cdot D = f \qquad \Delta \omega \cdot I$ $\Delta v = d(s_2 - s_1)/dt \qquad \Delta \omega =$ $f = f_2 \qquad \tau = \tau_2$ $0 = f_1 + f_2 \qquad 0 = \tau$

 $\Delta \omega \cdot D = \tau$ $\Delta \omega = d(\varphi_2 - \varphi_1)/dt$ $\tau = \tau_2$ $0 = \tau_1 + \tau_2$



Robotics and Mechatronics Centre



The springs: Since the new formulation is based on the positions, the model does not own a derivative anymore.

$$\Delta s \cdot C = f$$

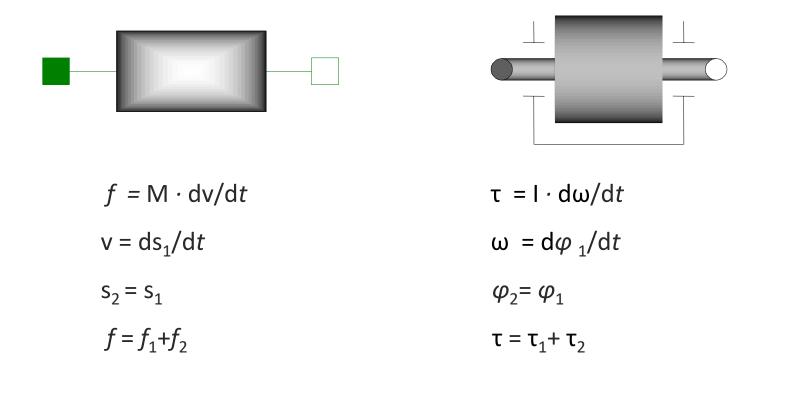
$$\Delta s = (s_2 - s_1) - s0$$

$$f = f_2$$

$$0 = f_1 + f_2$$

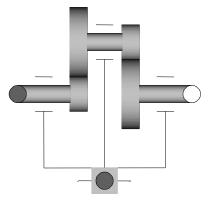
 $\Delta \varphi \cdot C = \tau$ $\Delta \varphi = (\varphi_2 - \varphi_1) - \varphi_0$ $\tau = \tau_2$ $0 = \tau_1 + \tau_2$

Whereas the spring components have lost their integrator, the mass and inertia have gained one:





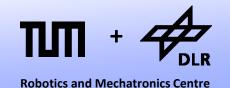
The transformer is represented by a gearbox. Its equation has hardly changed.



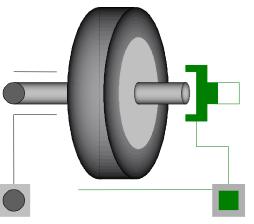
 $\varphi_2 = \text{Ratio} \cdot \varphi_1$ $\tau_1 = \text{Ratio} \cdot \tau_2$

© Dirk Zimmer, November 2022, Slide 25

Transformers



An ideal rolling wheel represents a transformation between translational and rotational movement.

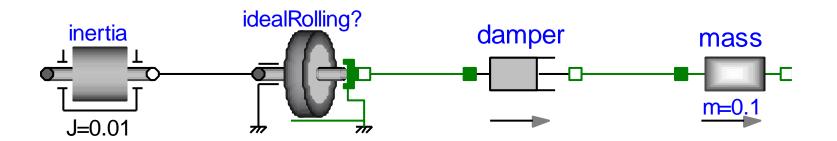


Ideal rolling means that the velocity of the virtual contact point is zero. The virtual contact point is located on the wheel.

Radius $\cdot \varphi = s$ $\tau = Radius \cdot f$

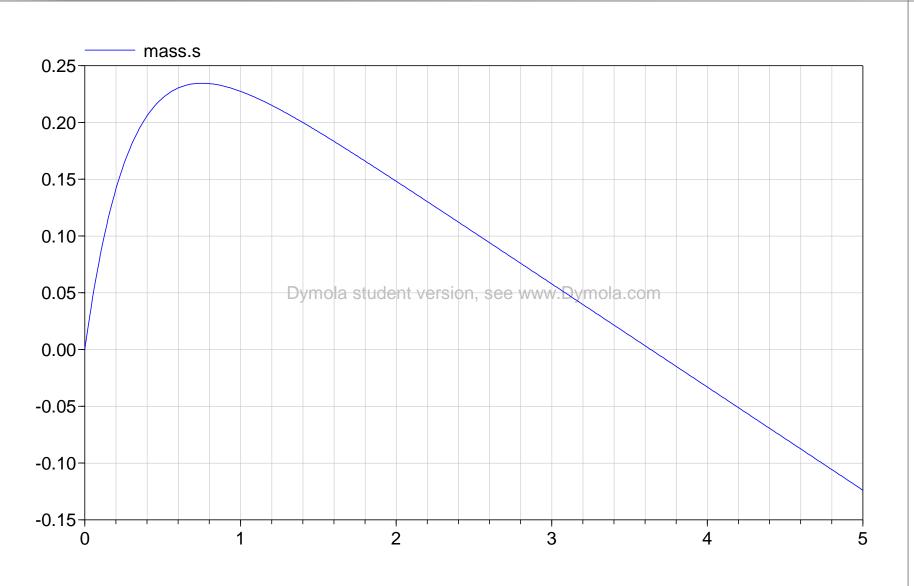
Ball with counter spin

- Finally, let us model a simple mechanical system.
- A ball is placed on a table and propelled forwards with reverse spin. Eventually the spin will decelerate the ball and force him to roll backwards.
- Here is a first model of such a system.

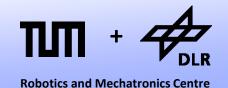


Ball with counter spin

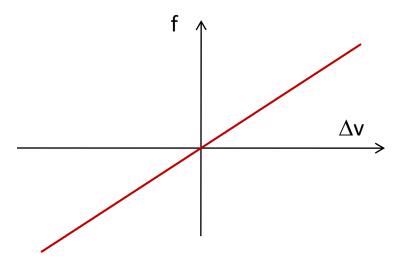
Robotics and Mechatronics Centre



© Dirk Zimmer, November 2022, Slide 28

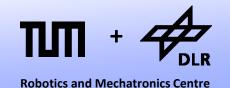


• The damper generates a friction force that is proportional to the difference in velocity.

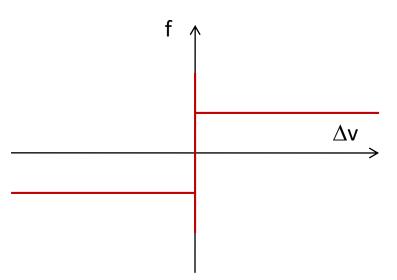


- The damper is not a good friction model. It is too "smooth".
- Instead we want to use a dry friction model instead.

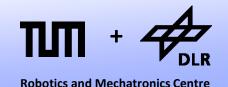
Dry Friction



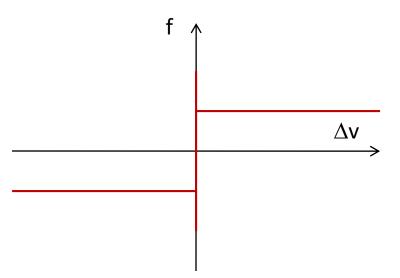
• The characteristic curve for dry friction is a multi-valued function and hence very tricky.



- The adhesive friction ("stiction") is stronger than dry friction while sliding. The friction force always counteracts the movement.
- Hence, the curve contains discontinuities and represents infinite stiffness.
- The curve can also not be properly described by a mathematical function.



• Hence, the dry friction model of Modelica is pretty complicated and contains many language elements we do not know yet.



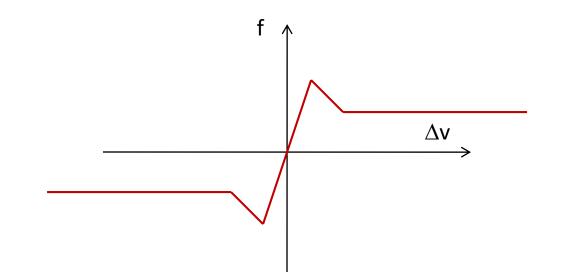
- Since we cannot cope with these discontinuities yet, we try to avoid them.
- We do so be regularizing the characteristic curve.

Dry Friction: Regularization



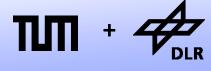
Robotics and Mechatronics Centre

• To this end, we "stretch" the curve and transform it into a piecewise linear function.



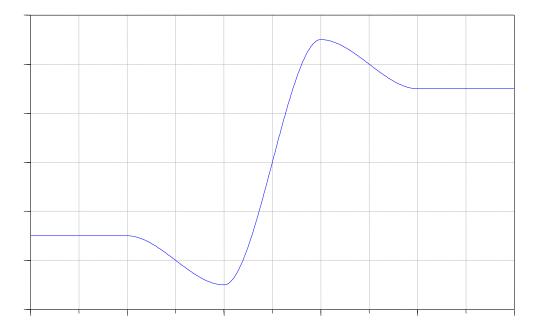
• The cost of this approach is: loss of precision and/or artificial stiffness.

Dry Friction: Regularization



Robotics and Mechatronics Centre

• Instead of generating a piecewise linear function, we can also compose the function using three S-functions and two constant functions.



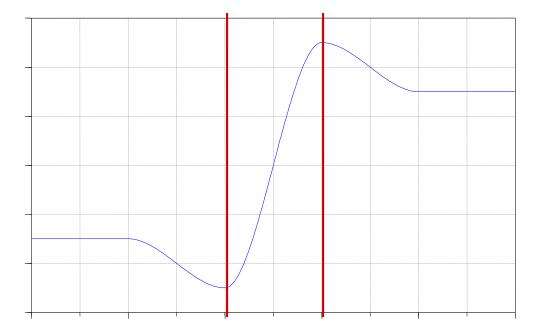
• The result is a nicely differentiable function.

Dry Friction: Regularization



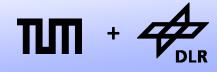
Robotics and Mechatronics Centre

• Instead of generating a piecewise linear function, we can also compose the function using three S-functions.



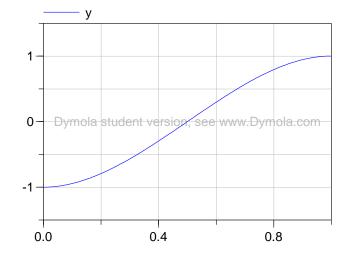
• The result is a nicely differentiable function.

Dry Friction: S-Function



• For the S-Function, we use a polynomial:

$$y = -x^3/2 + 3x/2$$



function S Func

input Real x;
output Real y;

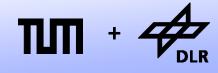
algorithm

```
if x > 1 then
  y := 1;
elseif x < -1 then
  y := -1;
else
  y := -0.5*x^3 + 1.5*x;
end if;</pre>
```

end S_Func;

© Dirk Zimmer, November 2022, Slide 35

Dry Friction: S-Function



• For the S-Function, we use a polynomial:

 $y = -x^3/2 + 3x/2$

• Then, we provide inputs in order to scale the function to fit an arbitrary rectangle

(x_min, y_min, x_max, y_max)

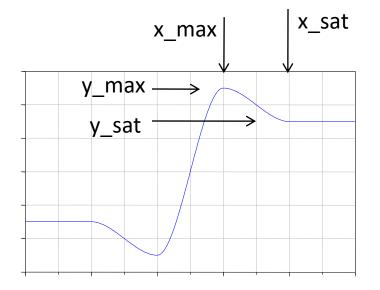
- The annotation tells Dymola that the function is differentiable once. So they are no discontinuities.
- This is important for the ODE-solver.

```
function S_Func "Models an S-Function"
  input Real x_min;
  input Real x_max;
  input Real y_min;
  input Real y_max;
  input Real x;
  output Real y;
protected
  Real x2;
```

```
algorithm
  x2 := x - x_max/2 - x_min/2;
  x2 := x2*2/(x_max-x_min);
  if x2 > 1 then
    y := 1;
  elseif x2 < -1 then
    y := -1;
  else
    y := -0.5*x2^3 + 1.5*x2;
  end if;
    y := y*(y_max-y_min)/2;
    y := y + y_max/2 + y_min/2;
    annotation(smoothOrder=1);
end S_Func;
```

Dry Friction: Triple S-Function

• We may use the S-Function in order to compose the point-symmetric Triple S-Function:



```
function TripleS Func
```

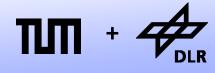
input Real x_max; input Real x_sat; input Real y_max; input Real y_sat;

input Real x;
output Real y;

```
annotation(smoothOrder=1);
end TripleS Func;
```

© Dirk Zimmer, November 2022, Slide 37

Dry Friction Model



• Now we can model our own dry friction component:

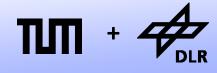

```
model DryFriction
extends Modelica.Mechanics.
Translational.Interfaces.
PartialCompliantWithRelativeStates;
import SI = Modelica.SIunits;
parameter SI.Force N
"normal force";
```

```
parameter SI.Velocity vAdhesion
"adhesion velocity";
parameter SI.Velocity vSlide
"sliding velocity";
parameter Real mu_A
"friction coefficient at adhesion";
parameter Real mu_S
"friction coefficient at sliding";
```

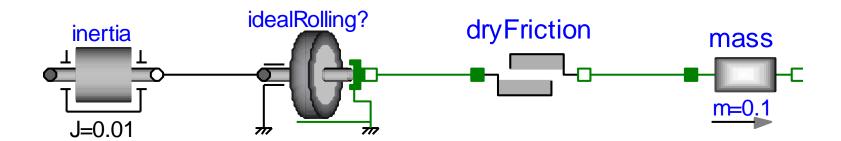
equation

end DryFriction;

Counter spin and dry friction

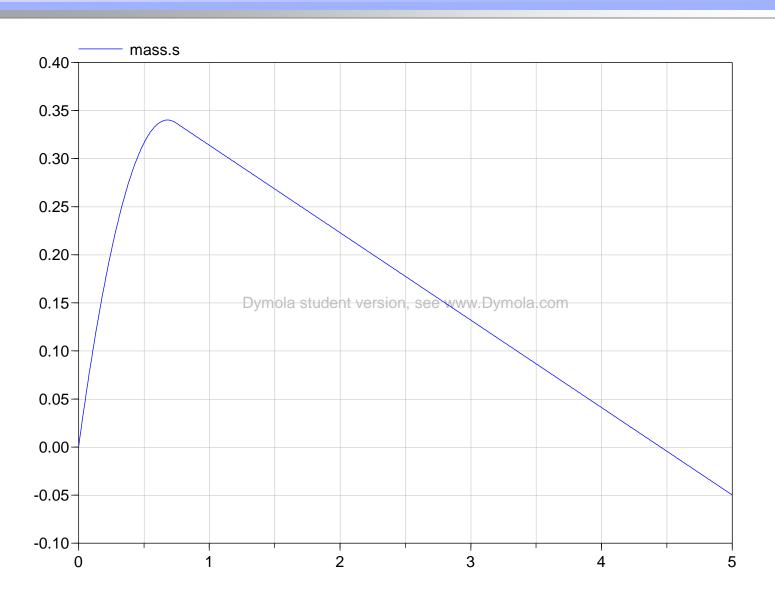


• Here is the application of our dry-friction component.

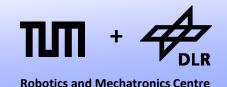


Counter spin and dry friction

Robotics and Mechatronics Centre



© Dirk Zimmer, November 2022, Slide 40



- Rotational and translational mechanics can be treated the same way.
- The proper formulation of mechanical systems requires the formulation of holonomic constraints.
- In order to enable this, positions and not velocities form the potential connector variables.
- Consequently, the derivatives are redistributed within the components.
- We learnt about dry friction and regularization.

Questions ?