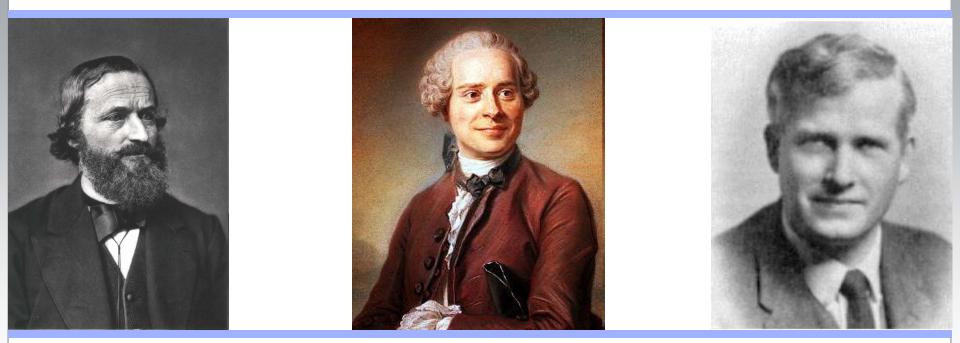
Virtual Physics Equation-Based Modeling

TUM, November 08, 2022

Object-oriented formulation of physical systems - Part I



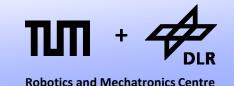
Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

Object-Oriented Languages

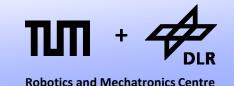
- One of the first programming languages that was designed for the main purpose of general computer simulation was Simula 67.
- It was designed in the 1960s, and it is also known to be the first objectoriented language in programming language history.
- Whereas many concepts and design ideas of Simula have been quickly adopted by many mainstream programming languages like C++, JAVA, or Eiffel, the development of equation-based object-oriented modeling languages took unfortunately much longer.
- In spite of common origins, this led partly to a dissociation of the corresponding object-oriented terminologies. Object-orientation in programming languages is thus partly distinct from its representation in the equation-based counterparts.

Object-Orientation in Physics



- The history of equation-based modeling begins way before the invention of the first programming language.
- Although the term *object orientation* is a recent invention of computer science, its major concept can be traced back through centuries.
- The idea to compose a formal description of a system from its underlying objects is much older than computer science.
- So today is going to be a strange lecture in physics. We take a fresh look at the formulation of physical laws.

D'Alembert's Principle



- It is a prerequisite for any object-oriented modeling approach that the behavior of the total system can be derived from the behavior of its components.
- A first manifestation of this problem can be found in the description of mechanical systems with rigidly connected bodies.

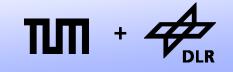
"Given is a system of multiple bodies that are arbitrarily [rigidly] connected with each other. We suppose that each body exhibits a natural motion that it cannot follow due to the rigid connections with the other bodies. We search the motion that is imposed to all bodies."

Jean-Baptiste le Rond d'Alembert, 1758

D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:





D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

Jakob I. Bernoulli

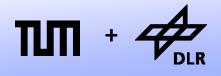
D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

Daniel Bernoulli

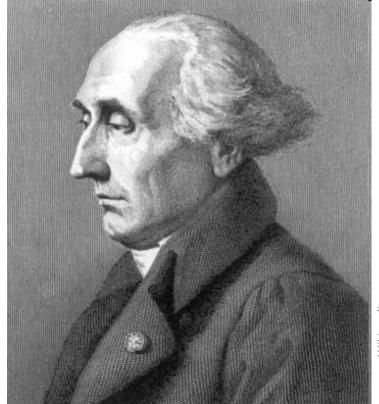
- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

Leonhard Euler

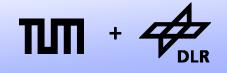


D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:



Joseph-Louis de Lagrange



D'Alembert's Principle



- It took 120 years and the brainpower of the greatest mathematicians to ٠ bring d'Alembert's Principle into its final form!
- 120 years for this equation: $\Sigma \mathbf{f} m\mathbf{a} = 0$???

• Unjustifiably, the presentation of

 $\Sigma \mathbf{f} - m\mathbf{a} = 0$

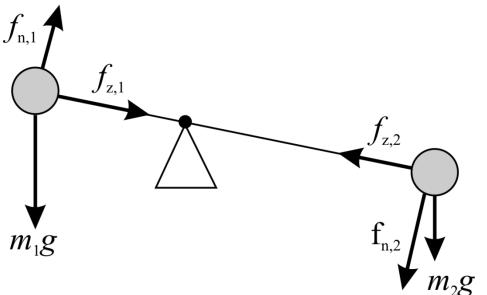
reduces a major mechanical principle to a trivial equation.

- Often it is mistakenly "derived" by transforming Newton's law f = ma, but Newton's law holds just for a single point of mass.
- D'Alembert's principle applies to complete mechanic systems. Its central idea is to take the imposed motion as counteracting force.
- D'Alembert's principle is best understood by applying it to an example...

Robotics and Mechatronics Centre

 Let us model this asymmetric seesaw. I₁ and I₂ denote the lengths of the opposing lever arms.

We start by the equations for



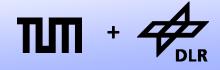
• Relation of velocity (in direction of **e**_n, normal to the lever arm):

$$v_1 \cdot l_2 = -v_2 \cdot l_1$$

• Balance of force:

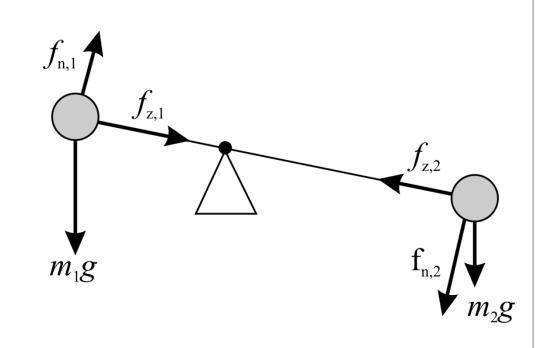
the lever arm.

$$f_{n,1} \cdot l_1 + f_{n,2} \cdot l_2 = 0$$



Robotics and Mechatronics Centre

 Each body element defines one differential equation since the acceleration is the time-derivative of the velocity.



• Left Body:

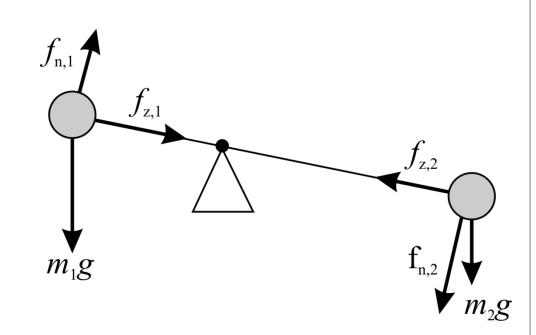
 $dv_1/dt = a_1$

• Right Body:

$$\mathrm{d}v_2/\mathrm{d}t = a_2$$

Robotics and Mechatronics Centre

- D'Alembert's Principle can now be directly applied on the body components.
- The sum of all forces has to be in equilibrium with the imposed motion



• Left Body:

$$f_{n,1}\mathbf{e}_{n} + f_{z,1}\mathbf{e}_{z} + (0, -m_{1}g)^{T} - m_{1}a_{1}\mathbf{e}_{n} = \mathbf{0}$$

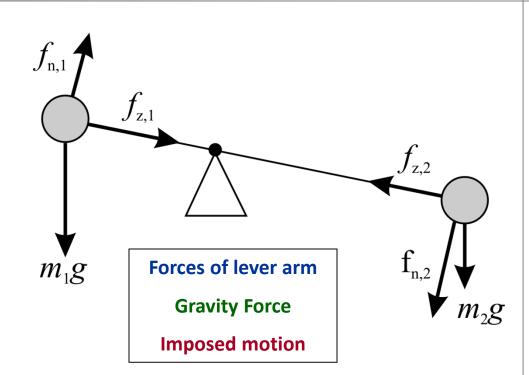
• Right Body:

$$f_{n,2}\mathbf{e}_{n} + f_{z,2}\mathbf{e}_{z} + (0, -m_{2}g)^{T} - m_{2}a_{2}\mathbf{e}_{n} = \mathbf{0}$$

© Dirk Zimmer, November 2022, Slide 14

Robotics and Mechatronics Centre

- D'Alembert's Principle can now be directly applied on the body components.
- The sum of all forces has to be in equilibrium with the imposed motion



• Left Body:

$$f_{n,1}\mathbf{e}_n + f_{z,1}\mathbf{e}_z + (0, -m_1g)^T - m_1a_1\mathbf{e}_n = \mathbf{0}$$

• Right Body:

$$f_{n,2}\mathbf{e}_{n} + f_{z,2}\mathbf{e}_{z} + (0, -m_{2}g)^{T} - m_{2}a_{2}\mathbf{e}_{n} = \mathbf{0}$$

© Dirk Zimmer, November 2022, Slide 15

- In total, we have 8 unknowns: $a_1, a_2, v_1, v_2, f_{n,1}, f_{n,2}, f_{z,1}, f_{z,2}$
- And 8 (4 + 2.2) scalar differential-algebraic equations:

$$v_{1} \cdot l_{2} = -v_{2} \cdot l_{1}$$

$$f_{n,1} \cdot l_{1} + f_{n,2} \cdot l_{2} = 0$$

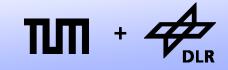
$$dv_{1}/dt = a_{1}$$

$$dv_{2}/dt = a_{2}$$

$$f_{n,1}\mathbf{e}_{n} + f_{z,1}\mathbf{e}_{z} + (0, -m_{1}g)^{T} - m_{1}a_{1}\mathbf{e}_{n} = \mathbf{0} \text{ (2 scalar equations)}$$

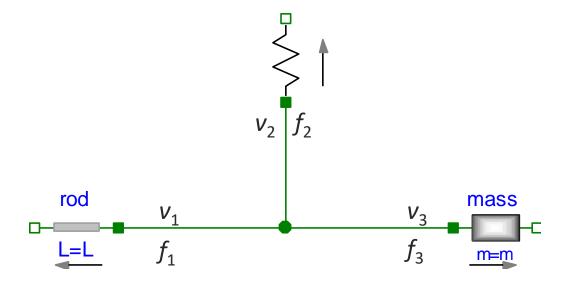
$$f_{n,2}\mathbf{e}_{n} + f_{z,2}\mathbf{e}_{z} + (0, -m_{2}g)^{T} - m_{2}a_{2}\mathbf{e}_{n} = \mathbf{0} \text{ (2 scalar equations)}$$

• So the system is complete and regular. Mission accomplished.

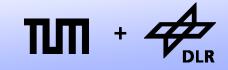


Robotics and Mechatronics Centre

There is a different perspective on D'Alembert's Principle

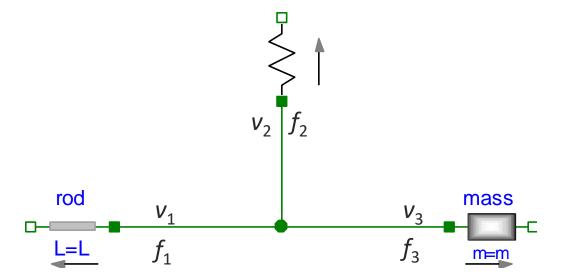


- Let us look at a mechanical node (or flange, if you prefer) that rigidly connects different mechanical components.
- Each component defines its own velocity $v_1, v_2, ..., v_n$ and its own force $f_1, f_2, ..., f_n$.



Robotics and Mechatronics Centre

No we can state the following equations for this node:



• Since the connection is rigid, all velocities must be equal:

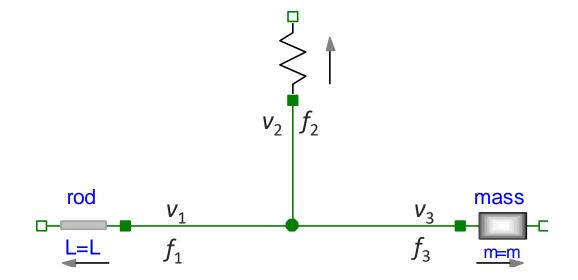
$$v_1 = v_2 = \dots = v_n$$

• And d'Alembert's principle is telling us that there is a balance of force:

$$f_1 + f_2 + \dots + f_n = 0$$

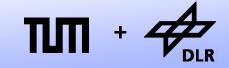
© Dirk Zimmer, November 2022, Slide 18

Robotics and Mechatronics Centre



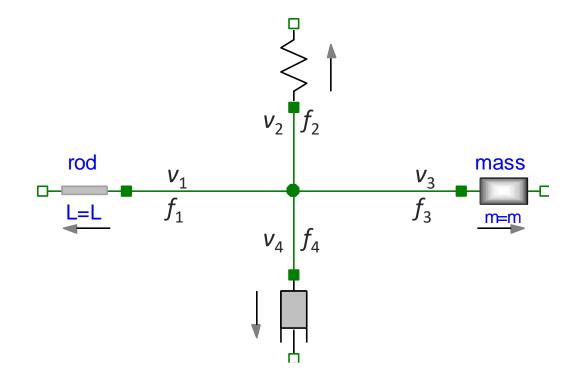
• If we do so, the body equations are represented by:

dv/dt = a



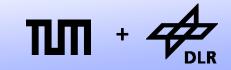
Robotics and Mechatronics Centre

When we add another component to the node....



• ...only the equations of the node change, but the equations of the individual components remain untouched.

D`Alembert`s Principle: Summary



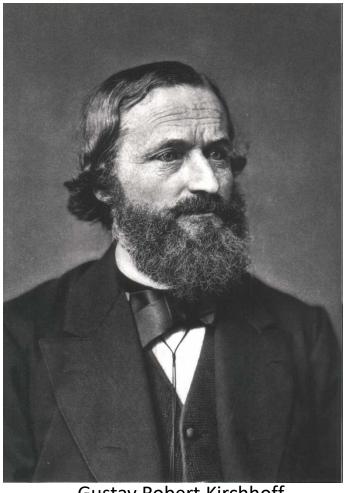
Robotics and Mechatronics Centre

 D'Alembert's principle is not an actual physical law. It represents a methodology to obtain a correct set of differential-algebraic equations for arbitrary mechanical systems.

• D'Alembert's principle reveals itself to be simple and elegant for this purpose, but it is by no means a triviality.

Kirchhoff`s Circuit Laws

- Whereas D'Alembert's principle provides a method to derive a correct set of equations for rigidly constrained mechanical components, *Gustav Kirchhoff* accomplished a similar task for the electrical domain.
- In 1845, he stated his two famous circuit laws.



Gustav Robert Kirchhoff 1824 - 1887

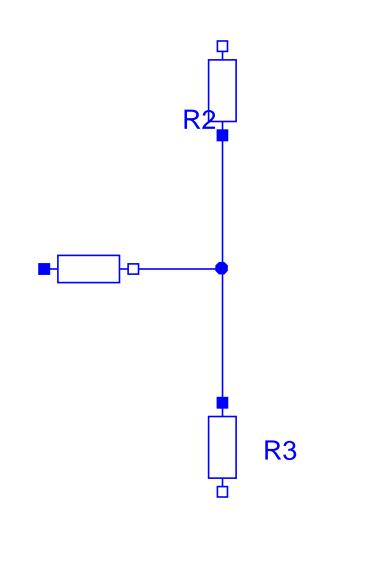
The 1st Circuit Law

Robotics and Mechatronics Centre

• The first circuit law states that for each electrical node, the sum of the incoming currents must equal the sum of the outgoing currents.

 $\Sigma i_{in} = \Sigma i_{out}$

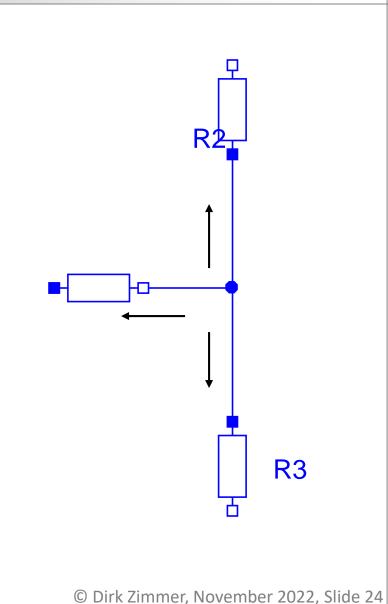
• Unfortunately, it not always clear in what direction the current is flowing.



The 1st Circuit Law

- Fortunately, we can transform this law into a more convenient form, by defining the flow direction and allowing negative currents.
- If we define that the current always flows from the node into the components, we can state:

 $\Sigma i_n = 0$

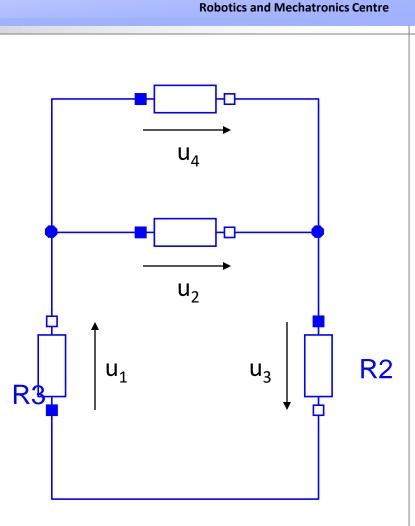


The 2nd Circuit Law

- The second circuit law is the mesh (or loop) rule.
- It states that the directed sum of the electrical voltages around any closed circuit must be zero.

 $\Sigma u_n = 0$

• This form is rather inconvenient since it requires to decompose the electric circuit into its loops.

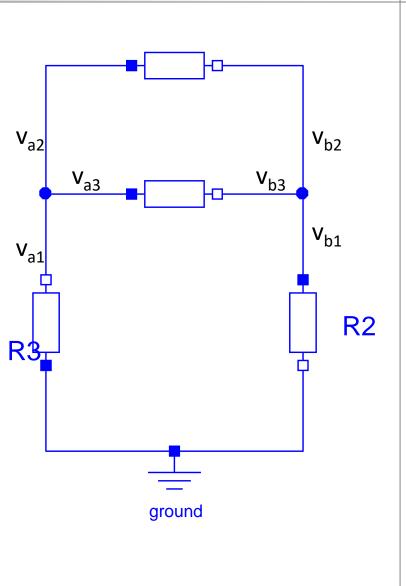


The 2nd Circuit Law

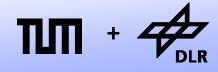
- Also this rule can be transformed into a more convenient form.
- To this end, we ground the circuit.
- Now, we can assign an electric potential v (Spannungspotential) to each node.
- Kirchhoff's mesh rule is now equivalent to the node equation

 $v_1 = v_2 = ... = v_n$

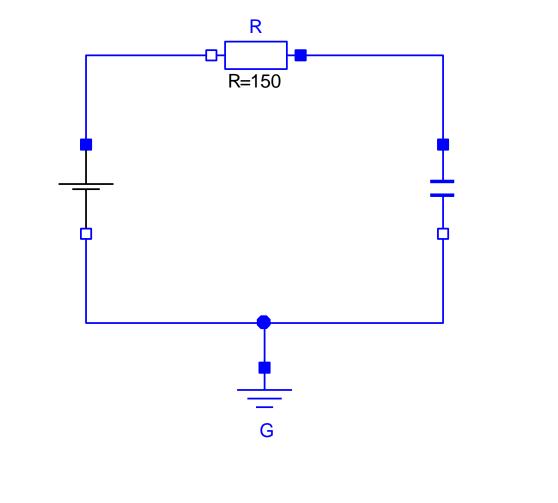
• The voltage potentials at each node must be equal.



Kirchhoff's Laws in Action

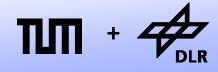


Let us model a simple electric circuit:

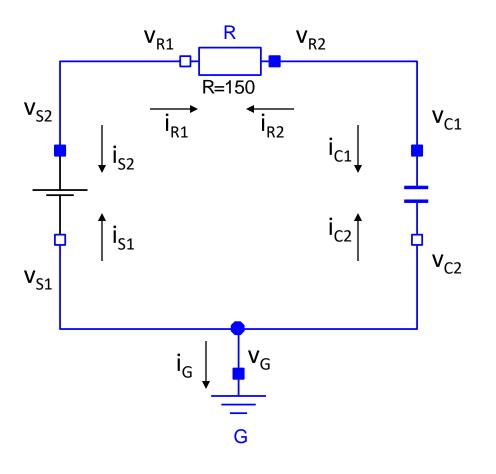


© Dirk Zimmer, November 2022, Slide 27

Kirchhoff's Laws in Action



Let us model a simple electric circuit:



Kirchhoff's Laws in Action

First we start with the component equations

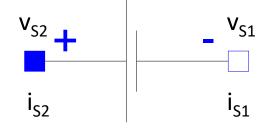
• The grounding is easy (2 unknowns, 1 equation):

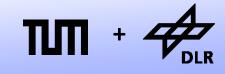
 $V_{G} = 0$

 The voltage source connects two nodes: (4 unknowns, 2 equations)

$$i_{S1} + i_{S2} = 0$$

 $v_{S1} + 10V = v_{S2}$





Kirchhoff`s Laws in Action

First we start with the component equations

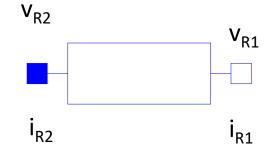
• The resistor is modeled by famous Ohm's law: (5 unknowns, 3 equations)

$$u_R = R^* i_{R1}$$

with

$$v_{R1} + v_{R2} = 0$$

 $v_{R1} + u_{R} = v_{R2}$



The capacitor contains a differential

equation. The voltage is induced by a charge. The derivative of the charge is the current. (5 unknowns, 3 equations)

First we start with the component equations

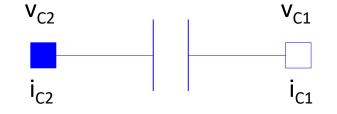
$$C^* du_C / dt = i_{C1}$$

with

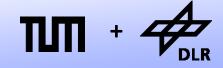
$$i_{c1} + i_{c2} = 0$$

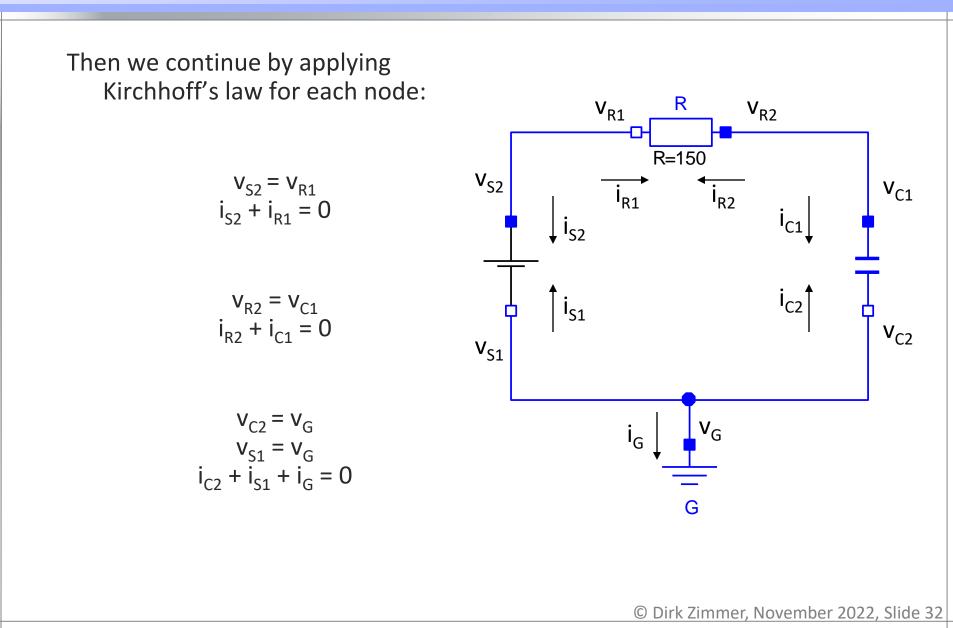
 $v_{c1} + u_c = v_{c2}$

Kirchhoff`s Laws in Action

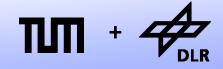


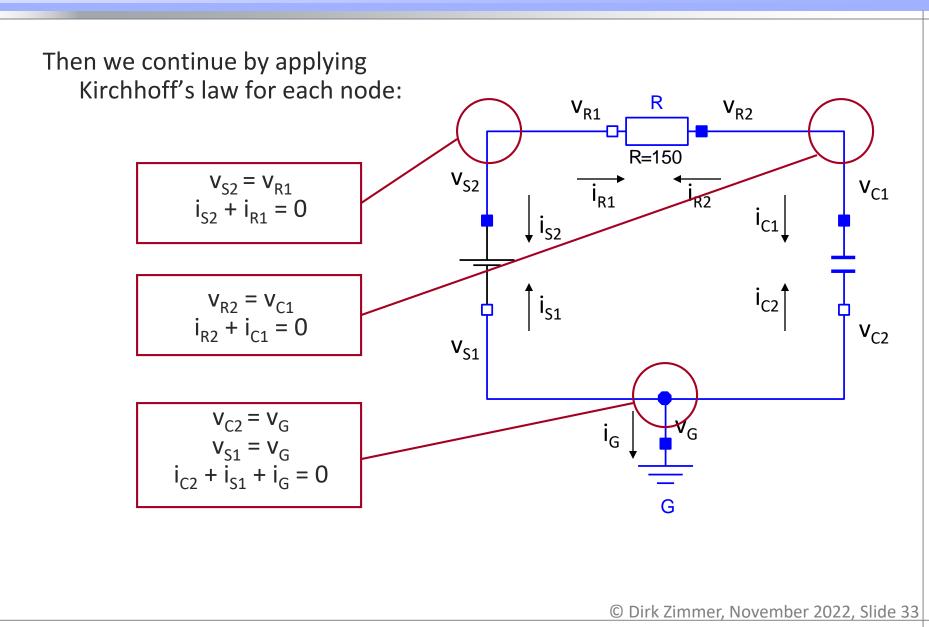
Kirchhoff`s Laws in Action





Kirchhoff`s Laws in Action





Kirchhoff`s Laws in Action

When we collect all equations, we count 16 equations and 16 unknowns. The system of differential-algebraic equations is complete.

 $i_{S2} + i_{S1} = 0$ $v_{R2} = v_{C1}$ $i_{R2} + i_{C1} = 0$ $v_{C2} = v_{G}$ $v_{S1} = v_{G}$ $i_{C2} + i_{S1} + i_{G} = 0$

 $v_{S2} = v_{R1}$

Node equations

$$i_{S1} + i_{S2} = 0$$

$$v_{S1} + 10V = v_{S2}$$

$$u_{R} = R^{*}i_{R1}$$

$$I_{R1} + I_{R2} = 0$$

$$v_{R1} + u_{R} = v_{R2}$$

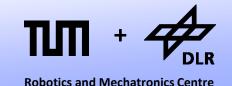
$$C^{*}du_{C}/dt = i_{C1}$$

$$I_{C1} + I_{C2} = 0$$

$$v_{C1} + u_{C} = v_{C2}$$

 $v_{2} = 0$

Component Equations

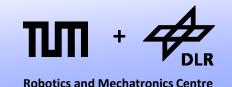


Object-Orientation

In this way, Kirchhoff enabled the object-oriented modeling of electric systems.

- By having general laws for the junctions between components, the equations of the individual components become *generally applicable and reusable*.
- Kirchhoff's laws prove that the junction structure of an electrical circuit provides a general interface for all potential electric components. The implementation of a component (its internal equations) can therefore be *separated from the interface* (its nodes).
- The interface of a component describes how the components can be applied, whereas the implementation describes what is its internal functionality. Components with equivalent interface can be *generically interchanged*.
- Known circuits can be *extended* by adding further junctions and components. Knowledge can be *inherited*.

Object-Orientation



- The highlighted terms represent keywords or motivations common to object-oriented programming.
- Next week, we are going to see how the modeling perspective of objectorientation is realized within a computer language.

Questions?