
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, January 17, 2023

Modeling and Simulation of Discontinuous Systems

0.0 2.5 5.0

-1.0

-0.5

0.0

0.5

1.0
x

© Dirk Zimmer, January 2023, Slide 2

Robotics and Mechatronics Centre

+

Today, we shall look at the problem of dealing with discontinuities in
modeling and simulation.

• Models from engineering often exhibit discontinuities that
describe situations such as switching, limiters, dry friction,
impulses, or similar phenomena.

• The modeling environment must deal with these problems in
special ways, since they influence strongly the numerical
behavior of the underlying differential equation solver.

Motivation

© Dirk Zimmer, January 2023, Slide 3

Robotics and Mechatronics Centre

+

What happens if we simply apply one of our ODE-solvers on a
system with discontinuity?

• The discontinuity occurs in f(x(t),t).

• All ODE-solvers (and their error-estimations) are based on a
polynomial approximation of f(x(t),t).

• Higher-Order methods (order > 1) even suppose that f(x,t) is
differentiable multiple times.

Standard ODE-Solvers

© Dirk Zimmer, January 2023, Slide 4

Robotics and Mechatronics Centre

+

What happens if we simply apply on of our ODE-solvers on a system
with discontinuity?

• Polynomials are always continuous and continuously
differentiable functions.

• Therefore, when the state equations of the system:

dx/dt = f(x(t), t)

exhibit a discontinuity, the polynomial extrapolation is a very
poor approximation of reality.

• Consequently, integration algorithms with a fixed step size
exhibit a large integration error, whereas integration algorithms
with a variable step size must reduce the step size dramatically in
the vicinity of the discontinuity.

Applying Standard ODE-Solvers

© Dirk Zimmer, January 2023, Slide 5

Robotics and Mechatronics Centre

+

• An integration algorithm of variable step size reduces the step
size at every discontinuity.

• After passing the discontinuity, the step size is only slowly
enlarged again, as the integration algorithm cannot distinguish
between a discontinuity and a point of large local stiffness (with a
large absolute value of the derivative).

• The step-size is constantly too small. The integration is inefficient
at best if not even totally inaccurate.

Applying Standard ODE-Solvers

h

t

Discontinuities

© Dirk Zimmer, January 2023, Slide 6

Robotics and Mechatronics Centre

+

• Trying to handle discontinuities implicitly by standard ODE
solvers is evidently not a good solution.

• We can avoid the occurring problems if we model the
discontinuities explicitly.

• The expression is one way to do this in Modelica:

f = if x < -w then –a else if x<w then a*x/w else a

Applying Standard ODE-Solvers

f

x

2*w

a

a

© Dirk Zimmer, January 2023, Slide 7

Robotics and Mechatronics Centre

+

• This if-statement models a state-event since the occurrence of
the discontinuity is dependent on the state x.

• An integration algorithm may now precisely locate the event by
iterating for the event.

• For instance, by using the bi-section algorithm:

Applying Standard ODE-Solvers

f

x

1

2

3
4

56

© Dirk Zimmer, January 2023, Slide 8

Robotics and Mechatronics Centre

+

• Bi-section converges slowly. Hence one may prefer the secant
method or its “safer”-twin: regula-falsi.

• It is possible to combine the secant method and bi-section
→ Dekker’s methods, Brent’s method.

Applying Standard ODE-Solvers

f

x

1

2

3
4

56

© Dirk Zimmer, January 2023, Slide 9

Robotics and Mechatronics Centre

+

• The iteration for the event-location is thereby performed on the
current model equation (here f = a*x/w).

• The event itself changes then the model equation
(here to f = a)

Applying Standard ODE-Solvers

f

x

1

2

3
4

56

© Dirk Zimmer, January 2023, Slide 10

Robotics and Mechatronics Centre

+

• Sometimes, the event iterations can cause errors in the evalution
(division by zero, negative roots)

• Sometimes, the if-statement is used to model continuous
functions.

• Hence the noEvent() clause exists: Example:
f = noEvent(if x > 0 then sqrt(x) else -sqrt(-x));

• Here, an event iteration would be both, unnecessary and
dangerous. Handling this function is now left to step-size control.

Applying Standard ODE-Solvers

f

x

© Dirk Zimmer, January 2023, Slide 11

Robotics and Mechatronics Centre

+

• If we know the precise location of the event, it is sufficient to
reduce the size of one single step.

• After passing the discontinuity we switch the model equation and
continue with the former step-size.

Applying Standard ODE-Solvers

h

t

Discontinuities

© Dirk Zimmer, January 2023, Slide 12

Robotics and Mechatronics Centre

+

• Evidently, this is much better than abusing step-size control for
the treatment of discontinuities.

• We can take much larger step-sizes.

Applying Standard ODE-Solvers

h

t

Discontinuities

© Dirk Zimmer, January 2023, Slide 13

Robotics and Mechatronics Centre

+

Let us see what we can model with the if-
statement.

• For instance, the model of an electrical diode
with the following curve.

• Here is one way to model it:

u = R*i

R = if u>0 then R_on else 1/G_off;

Modeling a Diode

Conductance:
Goff

Resistance:
Ron

i

u

© Dirk Zimmer, January 2023, Slide 14

Robotics and Mechatronics Centre

+

A more compact form is also possible:

u = if u>0 then R_on*i else i/G_off;

• This is possible because if-expressions are
non-causal in Dymola.

• Internally, the if-expressions may be
translated into:

u = s*R_on*i + (1-s)*i/G_off;

with
s = 1 if u>0
s = 0 if u<0

• The equation can be solved for u or i.

Modeling a Diode

Conductance:
Goff

Resistance:
Ron

i

u

© Dirk Zimmer, January 2023, Slide 15

Robotics and Mechatronics Centre

+

Unfortunately, a truly ideal diode cannot be
modeled in this way.

• Ron and Goff are 0 for an ideal diode.

• The model would be singular in either case.

• We need a different approach. Let us model
the diode by a parameterized curve with the
curve parameter s.

Blocking diode u=s with s < 0

Open diode i=s with s > 0

Modeling an Ideal Diode

s → -∞

i

u

s →∞

s = 0

© Dirk Zimmer, January 2023, Slide 16

Robotics and Mechatronics Centre

+

Here are model equations for an ideal diode

u = if s>0 then 0 else s;

i = if s>0 then s else 0;

• These are 2 equations over 3 variables.
Which are the 2 unknowns?

If u is known the model is singular for u=0.

If i is known the model is singular for i=0.

Only if s is known the model will be regular.

• But s depends itself on u and i. Hence the
model needs to be placed in an algebraic
loop and s must be chosen as tearing
variable of this loop. (Fortunately, Dymola
has an in-built heuristics for this…)

Modeling an Ideal Diode

s → -∞

i

u

s →∞

s = 0

© Dirk Zimmer, January 2023, Slide 17

Robotics and Mechatronics Centre

+

Here is an appropriate example: the
halfway-rectifier.

• The ideal diode D and the resistor
R1 form an algebraic loop that
determines the voltage drop
between source and capacitance.

• The tearing-variable is the curve-
parameter s.

Halfway-Rectifier

R=15

R1

G

D

0.0 0.1 0.2

0

2

4

6
capacitor.v

© Dirk Zimmer, January 2023, Slide 18

Robotics and Mechatronics Centre

+

R=15

R1

G

D

L=0.01

I

But if we modify this circuit slightly we
run into a serious problem.

• We add an inductance in front of
the diode.

• Since the natural state-variable of
the inductance is the current, the
causality of the resistor is fixed and
the diode is not part of algebraic
loop anymore.

• The simulation fails.

• Let us look closer at this problem.

Halfway-Rect. w. Line-Inductance

The inductance L contains the
differential equation:

di/dt*L = u

Hence, i is supposed to be known
and the causality of the diode is
fixed.

© Dirk Zimmer, January 2023, Slide 19

Robotics and Mechatronics Centre

+

The two circuits below represent the two different states of the diode. (either
fully open or fully blocking)

Diode: Open Diode: Closed

States (C.v, L.i); Index: 0 States (C.v); Index: 1

• The two different states of the diode lead to two different system with
different state variables and different perturbation index.

• A severe structural change has been caused by a seemingly harmless
equation.

• Dymola is currently unable to handle such variable-structure systems.

Halfway-Rect. w. Line-Inductance

R=15

R1

G

L=0.01

I

R=15

R1

G

L=0.01

L
I0=0

© Dirk Zimmer, January 2023, Slide 20

Robotics and Mechatronics Centre

+

So what can we do?

• One solution is to use a non-ideal diode and to avoid the structural change
at all. However this implements an artificial stiffness into the system that
may be unwanted.

• Fortunately, there is another trick: Inline Integration.

• Inline integration means that we inline the time-discrete equation of the
integration algorithm into the model equations.

• To this end, we need to replace the corresponding differential equations.

Inline-Integration

© Dirk Zimmer, January 2023, Slide 21

Robotics and Mechatronics Centre

+

Let us use inline integration for the halfway rectifier with line inductance.

• We want to inline Backward Euler (BE or BDF1) into the model of the
inductance.

• Hence the differential equation of the inductance:

di/dt * L = u

• gets replaced by:

(it – it-h)/h*L = ut

or

it = it-h + ut/L*h

with it or ut as potential unknowns

Inline-Integration: Example

© Dirk Zimmer, January 2023, Slide 22

Robotics and Mechatronics Centre

+

What is the advantage of inline-integration?

• By using inline-integration with BE, we have transformed the equation of
the inductance into:

it = it-h + ut/L*h

• This equation is structurally equivalent to a resistor equation. It can be
solved for it as well as for ut. Hence it can be also part of an algebraic loop.

• For the halfway-rectifier with line-inductance this means that the
equations of the inductance L, the resistor R1, and the Diode D form one
algebraic loop using the curve parameter s as tearing variable.

• This kind of inline-integration is also not supported by Dymola.
Dymola may perform inline-integration but after the differential index-
reduction has taken place. Hence this trick does currently not work in
Dymola.

Inline-Integration: Example

© Dirk Zimmer, January 2023, Slide 23

Robotics and Mechatronics Centre

+

So far, we have only looked at events that could be modeled by if-expressions.
However, also multi-valued functions do frequently occur in engineering systems.

• One example is a function for a hysteretic controller (As used, for instance, in a
refrigerator or many other devices that require a binary control).

Multi-Valued Functions

x

f

1

1

-1

-1

© Dirk Zimmer, January 2023, Slide 24

Robotics and Mechatronics Centre

+

To model such functions, the when-statement has been introduced in Modelica.

when x > 10 then
y = -10

end when;

• The when statement becomes active exactly when its condition becomes true.

• The equation is rather an assignment: The unknown must be placed on the left.

• The equation is only active for this particular time-instance. Right after, it is
deactivated again.

• The value of the unknown is held constant until the next activation of the same
when-statement.

Multi-Valued Functions

© Dirk Zimmer, January 2023, Slide 25

Robotics and Mechatronics Centre

+

Hence, the following code seems appropriate to model the hysteresis.

when x>1 then
y = 1;

end when;

when x<-1 then
y = -1;

end when;

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2023, Slide 26

Robotics and Mechatronics Centre

+

Hence, the following code seems appropriate to model the hysteresis.

when x>1 then
y = 1;

end when;

when x<-1 then
y = -1;

end when;

• However, this is illegal in Modelica since the variable y is determined in two
distinct when-statements. In order to avoid problems with simultaneous events,
this is not allowed.

• Of course, these two events are mutually exclusive, but Dymola does not know
this and it is impossible in general to derive this automatically.

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2023, Slide 27

Robotics and Mechatronics Centre

+

Here is an alternative formulation:

when x>1 or x<-1 then
y = if x>0 then 1 else -1;

end when;

• This is perfectly legal. We have simply merged the two events into a single when-
statement.

• By doing so, we have created another problem. Given a large step-size we might
jump directly from x=-1 to x=1. In this case, no event is triggered at all.

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2023, Slide 28

Robotics and Mechatronics Centre

+

Here is an alternative formulation:

when {x>1, x< -1} then
y = if x>0 then 1 else -1;

end when;

• This is perfectly legal. We have simply merged the two events into a single when-
statement.

• By doing so, we have created another problem. Given a large step-size we might
jump directly from x=-1 to x=1. In this case, no event is triggered at all.

• To cope with this problem, Modelica enables to state a condition-vector.
Now, we are fine.

Multi-Valued Functions

x

y

1

1
-1

-1

© Dirk Zimmer, January 2023, Slide 29

Robotics and Mechatronics Centre

+

In the Modelica Standard Library, the hysteresis is modeled even differently:

y = if x > 1 or ((pre(y)>0) and (x>=-1)) then 1 else -1;

• The operator pre(…) can be used in order to access the value of a variable
just right before the event.

• Using this operator, we can formulate multi-valued functions without the
use of when-statements.

• As analogy, the statement:
when g(…) then

y = f(…);
end when;

is internally transformed to….
if g(…) and not pre(g(…)) then

y = f(…);
else

y = pre(y);
end if;

Multi-Valued Functions

© Dirk Zimmer, January 2023, Slide 30

Robotics and Mechatronics Centre

+

So far, we have only looked at discrete changes in the function f(x(t),t)

dx/dt = f(x(t),u,t)

• But there are also cases where the actual state is changing discretely (e.g.
mechanical collisions/impulses) . Here dx/dt becomes of infinite value.
What shall we do?

• This problem corresponds to the re-initialization of the system.

• In current Modelica, this is only weakly supported by the function
reinit(state, newValue).

• Let us look at an example: The bouncing ball.

Discrete State Changes

© Dirk Zimmer, January 2023, Slide 31

Robotics and Mechatronics Centre

+

Let us model a bouncing ball that is being dropped from an initial height and
is bouncing on a table.

Bouncing Ball

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0
x

© Dirk Zimmer, January 2023, Slide 32

Robotics and Mechatronics Centre

+

Let us model a bouncing ball that is
being dropped from an initial
height and is bouncing on a table.

• The motion is described by the
variables x, v, and a.

• The elasticity of the impulse is
determined by the coefficient μ.

• The reinit command is used in a
when-clause.

• The pre(…) operator is used to
access the prior value of v in
order to compute the new
velocity.

Bouncing Ball

model BouncingBall

Real x;

Real v;

Real a;

parameter Real mu = 0.85;

initial equation

v = 0;

x = 1;

equation

v = der(x);

a = der(v);

a = -9.81;

when x<0 then

reinit(v,-mu*pre(v));

end when;

end BouncingBall;

© Dirk Zimmer, January 2023, Slide 33

Robotics and Mechatronics Centre

+

This looks fine. But what happens if we simulate for longer time periods?

Bouncing Ball

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0
x

© Dirk Zimmer, January 2023, Slide 34

Robotics and Mechatronics Centre

+

OOOPS!?! This is a common problem among many simulators. The
increasingly smaller bounces lead to a failure in the event detection.
Modeling a resting state by events is evidently not a good idea.

Bouncing Ball

0.0 2.5 5.0

-1.0

-0.5

0.0

0.5

1.0
x

© Dirk Zimmer, January 2023, Slide 35

Robotics and Mechatronics Centre

+

Let us combine what we have learned today by modeling an ideal model for
dry-friction.

• For the characteristic curve, we have used so far a regularization.
Here is a piecewise linear regularization:

Dry Friction Revisited

© Dirk Zimmer, January 2023, Slide 36

Robotics and Mechatronics Centre

+

Let us combine what we have learned today by modeling an ideal model for
dry-friction.

• In the ideal model, this is a multi-valued function.

Dry Friction Revisited

+R

-R

+S

-S

© Dirk Zimmer, January 2023, Slide 37

Robotics and Mechatronics Centre

+

Let us combine what we have learned today by modeling an ideal model for
dry-friction.

• In the ideal model, this is a multi-valued function.

• The function contains several modes:

Modeling Dry Friction

Stiction

Forward

Backward

StartForward

StartBackward

© Dirk Zimmer, January 2023, Slide 38

Robotics and Mechatronics Centre

+

We need to carefully model the transitions between these modes.

• This can be prepared by a mode-transition diagram:

Dry Friction: Mode-Transitions

Stiction

ForwardBackward

StartForwardStartBackward

f<-fStiction

v<0

v>=0 v<=0

f>fStiction

v>0

Start

v=0

v<0 v>0

a>0 and not v<0 a<0 and not v>0

© Dirk Zimmer, January 2023, Slide 39

Robotics and Mechatronics Centre

+

Let us setup the model:

• We use the standard translational
interface and derive the velocity
and acceleration.

• Two parameters values describe
the friction characteristics.

• The modes are represented by a
set of Boolean variables.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Velocity v;

SI.Acceleration a;

SI.Force fR;

Boolean Stiction;

Boolean StartForw;

Boolean Forward;

Boolean StartBack;

Boolean Backward;

equation

v = der(flange_a.s);

a = der(v);

[…]

end DryFriction;

© Dirk Zimmer, January 2023, Slide 40

Robotics and Mechatronics Centre

+

Let us setup the model:

• The friction force (flange_a.f) is
now dependent on the current
mode.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Force fR;

[…]

equation

[…]

flange_a.f =

if Forward then R

else if Backward then - R

else if StartForw then R

else if StartBack then -R

else fR;

0 =

if Stiction or initial() then a

else fR;

end DryFriction;

© Dirk Zimmer, January 2023, Slide 41

Robotics and Mechatronics Centre

+

Let us setup the model:

• The friction force (flange_a.f) is
now dependent on the current
mode.

• The internal operator
initial() becomes true just
at the moment of initialization.
Otherwise, it is false.

• Initially or at Stiction, the
acceleration is set to zero and the
friction force fR is free.

• The conditional constraint a=0
should actually be v=0 at least or
s=const, but this would cause a
structural change and cannot be
handled by Modelica/Dymola.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Force fR;

[…]

equation

[…]

flange_a.f =

if Forward then R

else if Backward then - R

else if StartForw then R

else if StartBack then -R

else fR;

0 =

if Stiction or initial() then a

else fR;

end DryFriction;

© Dirk Zimmer, January 2023, Slide 42

Robotics and Mechatronics Centre

+

Let us setup the model:

• Now we have to model the
mode-transitions according to
the diagram.

• We can use the pre() operator for
this purpose.

• All states must be exclusive.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Force fR;

[…]

equation

[…]

Forward = initial() and v > 0 or

pre(StartForw) and v > 0 or

pre(Forward) and not v <= 0;

Backward = initial() and v < 0 or

pre(StartBack) and v < 0 or

pre(Backward) and not v >= 0;

StartForw = pre(Stiction) and fR > S or

pre(StartForw) and not

(v>0 or a<=0 and not v>0);

StartBack = pre(Stiction) and fR<- S or

pre(StartBack) and not

(v<0 or a>=0 and not v<0);

Stiction = not (Forward or Backward or

StartForw or StartBack);

end DryFriction;

© Dirk Zimmer, January 2023, Slide 43

Robotics and Mechatronics Centre

+

Let us setup the model:

• Finally, there is a last issue:

• When the velocity crosses zero
and stiction is enforced, we need
to set the velocity explicitly to
zero.

• To this end, we use the reinit()-
command. Hence v must be a
state-variable.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Velocity v(

stateSelect=StateSelect.always

);

[…]

equation

[…]

when Stiction and not initial() then

reinit(v,0);

end when;

end DryFriction;

© Dirk Zimmer, January 2023, Slide 44

Robotics and Mechatronics Centre

+

• The ideal dry friction model
inherits the state machine from
the PartialFriction component.

• The key-law is the equation for f.

• f is either determined by the
constraint for zero acceleration
or determined by the sliding
friction coefficient.

Modeling Dry Friction

model IdealDryFriction

extends …Translational…PartialCompliant;

extends …Translational…PartialFriction;

parameter Modelica.SIunits.Force S = 10;

parameter Modelica.SIunits.Force R = 8;

equation

free = false;

f0 = R;

f0_max = S;

// velocity and acceleration of flanges

v_relfric = der(s_rel);

a_relfric = der(v_relfric);

// Friction force

f = if locked then sa*unitForce

else (if startForward then

R else

if startBackward then -

R else

if pre(mode) == Forward then

R else -R);

end IdealDryFriction

© Dirk Zimmer, January 2023, Slide 45

Robotics and Mechatronics Centre

+

Let us test our dry-friction model:

• The mass (5kg) has an initial speed of 5m/s

• The (negative) force is ramped up from 0 to 15N

Simulating Dry Friction

idealDryFriction mass

m=5

f

force

ramp

duration=10

© Dirk Zimmer, January 2023, Slide 46

Robotics and Mechatronics Centre

+

Here is the simulation result:

Simulating Dry Friction

0 2 4 6 8 10

-4

-2

0

2

4

6

8
mass.v [m/s] mass.s [m]

Forward

BackwardStiction

StartBackw

© Dirk Zimmer, January 2023, Slide 47

Robotics and Mechatronics Centre

+

This system is more fun.

• Mass1 (5kg) is initially at rest.

• Mass2 (100kg) starts with v=1m/s.

Simulating Dry Friction

idealDryFriction mass1

m=5

spring mass2

m=100

© Dirk Zimmer, January 2023, Slide 48

Robotics and Mechatronics Centre

+

Here is the simulation result:

Simulating Dry Friction

0 10 20

-1

0

1

2

3

4

5

6

7
mass1.v [m/s] mass1.s [m] mass2.s [m]

Questions ?

© Dirk Zimmer, January 2015, Slide 50

Robotics and Mechatronics Centre

+Exercise 12: Light arc

Modelling electric light arc discharges

• No current, if not ignited

• Ignition at von = 25kV/cm

– Fixed power regime at low current

– Resistor regime at high current
R ≈ voff / imin

• Extinction at voff = 5kV/cm, imin = 1 A

© Dirk Zimmer, January 2015, Slide 51

Robotics and Mechatronics Centre

+Exercise 12: Light arc

Model a simplified light arc!

• No current, if not ignited

• Ignition at von = 25kV/cm

– Fixed power regime at low current

– Resistor regime at high current
R ≈ voff / imin

• Extinction at voff = 5kV/cm, imin = 1 A

Test your model!

• What happens in the circuit here?

• What happens with an inductance?

© Dirk Zimmer, January 2015, Slide 52

Robotics and Mechatronics Centre

+Exercise 12: Light arc

You may use the DryFriction model as a template...

	Lecture11
	Virtual Physics�Equation-Based Modeling
	Motivation
	Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Applying Standard ODE-Solvers
	Modeling a Diode
	Modeling a Diode
	Modeling an Ideal Diode
	Modeling an Ideal Diode
	Halfway-Rectifier
	Halfway-Rect. w. Line-Inductance
	Halfway-Rect. w. Line-Inductance
	Inline-Integration
	Inline-Integration: Example
	Inline-Integration: Example
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Multi-Valued Functions
	Discrete State Changes
	Bouncing Ball
	Bouncing Ball
	Bouncing Ball
	Bouncing Ball
	Dry Friction Revisited
	Dry Friction Revisited
	Modeling Dry Friction
	Dry Friction: Mode-Transitions
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Modeling Dry Friction
	Simulating Dry Friction
	Simulating Dry Friction
	Simulating Dry Friction
	Simulating Dry Friction
	Questions ?
	Exercise 12: Light arc
	Exercise 12: Light arc
	Exercise 12: Light arc

