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Today, we shall look at the problem of dealing with discontinuities in 
modeling and simulation.

• Models from engineering often exhibit discontinuities that 
describe situations such as switching, limiters, dry friction, 
impulses, or similar phenomena.

• The modeling environment must deal with these problems in 
special ways, since they influence strongly the numerical 
behavior of the underlying differential equation solver.

Motivation
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What happens if we simply apply one of our ODE-solvers on a 
system with discontinuity?

• The discontinuity occurs in f(x(t),t). 

• All ODE-solvers (and their error-estimations) are based on a 
polynomial approximation of f(x(t),t).

• Higher-Order methods (order > 1) even suppose that f(x,t) is 
differentiable multiple times.

Standard ODE-Solvers
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What happens if we simply apply on of our ODE-solvers on a system 
with discontinuity?

• Polynomials are always continuous and continuously 
differentiable functions.

• Therefore, when the state equations of the system:

dx/dt = f(x(t), t)

exhibit a discontinuity, the polynomial extrapolation is a very 
poor approximation of reality.

• Consequently, integration algorithms with a fixed step size 
exhibit a large integration error, whereas integration algorithms 
with a variable step size must reduce the step size dramatically in 
the vicinity of the discontinuity.

Applying Standard ODE-Solvers
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• An integration algorithm of variable step size reduces the step 
size at every discontinuity.

• After passing the discontinuity, the step size is only slowly 
enlarged again, as the integration algorithm cannot distinguish 
between a discontinuity and a point of large local stiffness (with a 
large absolute value of the derivative).

• The step-size is constantly too small. The integration is inefficient 
at best if not even totally inaccurate.

Applying Standard ODE-Solvers

h

t

Discontinuities
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• Trying to handle discontinuities implicitly by standard ODE 
solvers is evidently not a good solution.

• We can avoid the occurring problems if we model the 
discontinuities explicitly.

• The expression is one way to do this in Modelica:

f = if x < -w then –a else if x<w then a*x/w else a

Applying Standard ODE-Solvers

f

x

2*w

a

a
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• This if-statement models a state-event since the occurrence of 
the discontinuity is dependent on the state x.

• An integration algorithm may now precisely locate the event by 
iterating for the event. 

• For instance, by using the bi-section algorithm:

Applying Standard ODE-Solvers
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• Bi-section converges slowly. Hence one may prefer the secant 
method or its “safer”-twin: regula-falsi.

• It is possible to combine the secant method and bi-section
→ Dekker’s methods, Brent’s method.

Applying Standard ODE-Solvers
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• The iteration for the event-location is thereby performed on the 
current model equation (here f = a*x/w).

• The event itself changes then the model equation 
(here to f = a)

Applying Standard ODE-Solvers
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• Sometimes, the event iterations can cause errors in the evalution 
(division by zero, negative roots)

• Sometimes, the if-statement is used to model continuous 
functions. 

• Hence the noEvent() clause exists: Example: 
f = noEvent(if x > 0 then sqrt(x) else -sqrt(-x));

• Here, an event iteration would be both, unnecessary and 
dangerous. Handling this function is now left to step-size control.

Applying Standard ODE-Solvers

f

x
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• If we know the precise location of the event, it is sufficient to 
reduce the size of one single step.

• After passing the discontinuity we switch the model equation and 
continue with the former step-size.

Applying Standard ODE-Solvers

h

t

Discontinuities



© Dirk Zimmer, January 2023, Slide 12

Robotics and Mechatronics Centre

+

• Evidently, this is much better than abusing step-size control for 
the treatment of discontinuities.

• We can take much larger step-sizes.

Applying Standard ODE-Solvers

h

t

Discontinuities
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Let us see what we can model with the if-
statement. 

• For instance, the model of an electrical diode 
with the following curve.

• Here is one way to model it:

u = R*i

R = if u>0 then R_on else 1/G_off;

Modeling a Diode

Conductance: 
Goff

Resistance: 
Ron

i

u
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A more compact form is also possible: 

u = if u>0 then R_on*i else i/G_off;

• This is possible because if-expressions are 
non-causal in Dymola.

• Internally, the if-expressions may be 
translated into:

u = s*R_on*i + (1-s)*i/G_off;

with 
s = 1 if u>0  
s = 0 if u<0

• The equation can be solved for u or i.

Modeling a Diode

Conductance: 
Goff

Resistance: 
Ron

i

u
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Unfortunately, a truly ideal diode cannot be 
modeled in this way.

• Ron and Goff are 0 for an ideal diode.

• The model would be singular in either case.

• We need a different approach. Let us model 
the diode by a parameterized curve with the 
curve parameter s.

Blocking diode u=s with s < 0

Open diode i=s with s > 0

Modeling an Ideal Diode

s → -∞

i

u

s →∞

s = 0
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Here are model equations for an ideal diode

u = if s>0 then 0 else s;

i = if s>0 then s else 0;

• These are 2 equations over 3 variables. 
Which are the 2 unknowns?

If u is known the model is singular for u=0.

If i is known the model is singular for i=0.

Only if s is known the model will be regular.

• But s depends itself on u and i. Hence the 
model needs to be placed in an algebraic 
loop and s must be chosen as tearing 
variable of this loop. (Fortunately, Dymola 
has an in-built heuristics for this…)

Modeling an Ideal Diode

s → -∞

i

u

s →∞

s = 0
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Here is an appropriate example: the 
halfway-rectifier.

• The ideal diode D and the resistor 
R1 form an algebraic loop that 
determines the voltage drop 
between source and capacitance.

• The tearing-variable is the curve-
parameter s.

Halfway-Rectifier

R=15

R1

G

D
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R=15

R1

G

D

L=0.01

I

But if we modify this circuit slightly we 
run into a serious problem.

• We add an inductance in front of 
the diode.

• Since the natural state-variable of 
the inductance is the current, the 
causality of the resistor is fixed and 
the diode is not part of algebraic 
loop anymore.

• The simulation fails.

• Let us look closer at this problem.

Halfway-Rect. w. Line-Inductance

The inductance L contains the 
differential equation:

di/dt*L = u

Hence, i is supposed to be known 
and the causality of the diode is 
fixed.
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The two circuits below represent the two different states of the diode. (either 
fully open or fully blocking)

Diode: Open Diode: Closed

States (C.v, L.i); Index: 0 States (C.v); Index: 1

• The two different states of the diode lead to two different system with 
different state variables and different perturbation index.

• A severe structural change has been caused by a seemingly harmless 
equation. 

• Dymola is currently unable to handle such variable-structure systems.

Halfway-Rect. w. Line-Inductance

R=15

R1

G

L=0.01

I

R=15

R1

G

L=0.01

L
I0=0
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So what can we do?

• One solution is to use a non-ideal diode and to avoid the structural change 
at all. However this implements an artificial stiffness into the system that 
may be unwanted.

• Fortunately, there is another trick: Inline Integration.

• Inline integration means that we inline the time-discrete equation of the 
integration algorithm into the model equations.

• To this end, we need to replace the corresponding differential equations.

Inline-Integration
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Let us use inline integration for the halfway rectifier with line inductance.

• We want to inline Backward Euler (BE or BDF1) into the model of the 
inductance.

• Hence the differential equation of the inductance:

di/dt * L = u

• gets replaced by:

(it – it-h)/h*L = ut

or

it = it-h + ut/L*h

with it or ut as potential unknowns

Inline-Integration: Example
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What is the advantage of inline-integration?

• By using inline-integration with BE, we have transformed the equation of 
the inductance into:

it = it-h + ut/L*h

• This equation is structurally equivalent to a resistor equation. It can be 
solved for it as well as for ut. Hence it can be also part of an algebraic loop.

• For the halfway-rectifier with line-inductance this means that the 
equations of the inductance L, the resistor R1, and the Diode D form one 
algebraic loop using the curve parameter s as tearing variable.

• This kind of inline-integration is also not supported by Dymola.
Dymola may perform inline-integration but after the differential index-
reduction has taken place. Hence this trick does currently not work in 
Dymola.

Inline-Integration: Example
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So far, we have only looked at events that could be modeled by if-expressions. 
However, also multi-valued functions do frequently occur in engineering systems.

• One example is a function for a hysteretic controller (As used, for instance, in a 
refrigerator or many other devices that require a binary control).

Multi-Valued Functions

x

f
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1

-1

-1
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To model such functions, the when-statement has been introduced in Modelica.

when x > 10 then
y = -10

end when;

• The when statement becomes active exactly when its condition becomes true.

• The equation is rather an assignment: The unknown must be placed on the left.

• The equation is only active for this particular time-instance. Right after, it is 
deactivated again.

• The value of the unknown is held constant until the next activation of the same 
when-statement.

Multi-Valued Functions
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Hence, the following code seems appropriate to model the hysteresis.

when x>1 then
y = 1;

end when;

when x<-1 then
y = -1;

end when;

Multi-Valued Functions

x

y

1

1
-1

-1
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Hence, the following code seems appropriate to model the hysteresis.

when x>1 then
y = 1;

end when;

when x<-1 then
y = -1;

end when;

• However,  this is illegal in Modelica since the variable y is determined in two 
distinct when-statements. In order to avoid problems with simultaneous events, 
this is not allowed.

• Of course, these two events are mutually exclusive, but Dymola does not know 
this and it is impossible in general to derive this automatically.

Multi-Valued Functions
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1
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-1
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Here is an alternative formulation:

when x>1 or x<-1 then
y = if x>0 then 1 else -1;

end when;

• This is perfectly legal. We have simply merged the two events into a single when-
statement.

• By doing so, we have created another problem. Given a large step-size we might 
jump directly from x=-1 to x=1. In this case, no event is triggered at all.

Multi-Valued Functions

x

y

1

1
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-1
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Here is an alternative formulation:

when {x>1, x< -1} then
y = if x>0 then 1 else -1;

end when;

• This is perfectly legal. We have simply merged the two events into a single when-
statement.

• By doing so, we have created another problem. Given a large step-size we might 
jump directly from x=-1 to x=1. In this case, no event is triggered at all.

• To cope with this problem, Modelica enables to state a condition-vector.
Now, we are fine.

Multi-Valued Functions

x

y

1

1
-1

-1
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In the Modelica Standard Library, the hysteresis is modeled even differently:

y = if x > 1 or ((pre(y)>0) and (x>=-1)) then 1 else -1;

• The operator pre(…) can be used in order to access the value of a variable 
just right before the event.

• Using this operator, we can formulate multi-valued functions without the 
use of when-statements.

• As analogy, the statement:
when g(…) then

y = f(…);
end when;

is internally transformed to….
if g(…) and not pre(g(…)) then

y = f(…); 
else

y = pre(y);
end if;

Multi-Valued Functions
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So far, we have only looked at discrete changes in the function f(x(t),t)

dx/dt = f(x(t),u,t)

• But there are also cases where the actual state is changing discretely (e.g. 
mechanical collisions/impulses) . Here dx/dt becomes of infinite value. 
What shall we do?

• This problem corresponds to the re-initialization of the system.

• In current Modelica, this is only weakly supported by the function 
reinit(state, newValue).

• Let us look at an example: The bouncing ball.

Discrete State Changes
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Let us model a bouncing ball that is being dropped from an initial height and 
is bouncing on a table.

Bouncing Ball
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Let us model a bouncing ball that is 
being dropped from an initial 
height and is bouncing on a table.

• The motion is described by the 
variables x, v, and a. 

• The elasticity of the impulse is 
determined by the coefficient μ.

• The reinit command is used in a 
when-clause. 

• The pre(…) operator is used to 
access the prior value of v in 
order to compute the new 
velocity.

Bouncing Ball

model BouncingBall

Real x;

Real v;

Real a;

parameter Real mu = 0.85;

initial equation

v = 0;

x = 1;

equation

v = der(x);

a = der(v);

a = -9.81;

when x<0 then

reinit(v,-mu*pre(v));

end when;

end BouncingBall;
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This looks fine. But what happens if we simulate for longer time periods?

Bouncing Ball
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OOOPS!?! This is a common problem among many simulators. The 
increasingly smaller bounces lead to a failure in the event detection. 
Modeling a resting state by events is evidently not a good idea. 

Bouncing Ball
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Let us combine what we have learned today by modeling an ideal model for 
dry-friction.

• For the characteristic curve, we have used so far a regularization.
Here is a piecewise linear regularization:

Dry Friction Revisited
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Let us combine what we have learned today by modeling an ideal model for 
dry-friction.

• In the ideal model, this is a multi-valued function.

Dry Friction Revisited

+R

-R

+S

-S
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Let us combine what we have learned today by modeling an ideal model for 
dry-friction.

• In the ideal model, this is a multi-valued function.

• The function contains several modes:

Modeling Dry Friction

Stiction

Forward

Backward

StartForward

StartBackward
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We need to carefully model the transitions between these modes.

• This can be prepared by a mode-transition diagram:

Dry Friction: Mode-Transitions

Stiction

ForwardBackward

StartForwardStartBackward

f<-fStiction

v<0

v>=0 v<=0

f>fStiction

v>0

Start

v=0

v<0 v>0

a>0 and not v<0 a<0 and not v>0
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Let us setup the model:

• We use the standard translational 
interface and derive the velocity 
and acceleration.

• Two parameters values describe 
the friction characteristics.

• The modes are represented by a 
set of Boolean variables.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Velocity v;

SI.Acceleration a;

SI.Force fR;

Boolean Stiction;

Boolean StartForw;

Boolean Forward;

Boolean StartBack;

Boolean Backward;

equation

v = der(flange_a.s);

a = der(v);

[…] 

end DryFriction;
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Let us setup the model:

• The friction force (flange_a.f) is 
now dependent on the current 
mode.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Force fR;

[…]

equation

[…] 

flange_a.f = 

if Forward then R 

else if Backward then - R

else if StartForw then R 

else if StartBack then -R

else fR;

0 = 

if Stiction or initial() then a 

else fR;

end DryFriction;
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Let us setup the model:

• The friction force (flange_a.f) is 
now dependent on the current 
mode.

• The internal operator 
initial() becomes true just 
at the moment of initialization. 
Otherwise, it is false.

• Initially or at Stiction, the 
acceleration is set to zero and the 
friction force fR is free.

• The conditional constraint a=0 
should actually be v=0 at least or 
s=const, but this would cause a 
structural change and cannot be 
handled by Modelica/Dymola.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Force fR;

[…]

equation

[…] 

flange_a.f = 

if Forward then R 

else if Backward then - R

else if StartForw then R 

else if StartBack then -R

else fR;

0 = 

if Stiction or initial() then a 

else fR;

end DryFriction;
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Let us setup the model:

• Now we have to model the 
mode-transitions according to 
the diagram.

• We can use the pre() operator for 
this purpose.

• All states must be exclusive.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Force fR;

[…]

equation

[…] 

Forward = initial() and v > 0 or

pre(StartForw) and v > 0 or

pre(Forward) and not v <= 0;

Backward = initial() and v < 0 or

pre(StartBack) and v < 0 or

pre(Backward) and not v >= 0;

StartForw = pre(Stiction) and fR > S or

pre(StartForw) and not

(v>0 or a<=0 and not v>0);

StartBack = pre(Stiction) and fR<- S or

pre(StartBack) and not

(v<0 or a>=0 and not v<0);

Stiction = not (Forward or Backward or

StartForw or StartBack);

end DryFriction;
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Let us setup the model:

• Finally, there is a last issue:

• When the velocity crosses zero 
and stiction is enforced, we need 
to set the velocity explicitly to 
zero.

• To this end, we use the reinit()-
command. Hence v must be a 
state-variable.

Modeling Dry Friction

model DryFriction

parameter SI.Force S = 10;

parameter SI.Force R = 8;

Flange_a flange_a;

SI.Velocity v(

stateSelect=StateSelect.always

);

[…]

equation

[…] 

when Stiction and not initial() then

reinit(v,0);

end when;

end DryFriction;
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• The ideal dry friction model 
inherits the state machine from 
the PartialFriction component.

• The key-law is the equation for f.

• f is either determined by the 
constraint for zero acceleration 
or determined by the sliding 
friction coefficient.

Modeling Dry Friction

model IdealDryFriction

extends …Translational…PartialCompliant;

extends …Translational…PartialFriction;

parameter Modelica.SIunits.Force S = 10;

parameter Modelica.SIunits.Force R = 8;

equation

free = false;

f0 = R;

f0_max = S;

// velocity and acceleration of flanges

v_relfric = der(s_rel);

a_relfric = der(v_relfric);

// Friction force

f = if locked then sa*unitForce

else (if startForward then

R else

if startBackward then -

R else

if pre(mode) == Forward then

R else -R);

end IdealDryFriction
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Let us test our dry-friction model:

• The mass (5kg) has an initial speed of 5m/s

• The (negative) force is ramped up from 0 to 15N

Simulating Dry Friction

idealDryFriction mass

m=5

f

force

ramp

duration=10
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Here is the simulation result:

Simulating Dry Friction
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This system is more fun.

• Mass1 (5kg) is initially at rest.

• Mass2 (100kg) starts with v=1m/s.

Simulating Dry Friction

idealDryFriction mass1

m=5

spring mass2

m=100
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Here is the simulation result:

Simulating Dry Friction

0 10 20

-1
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mass1.v [m/s] mass1.s [m] mass2.s [m]



Questions ?
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+Exercise 12: Light arc

Modelling electric light arc discharges

• No current, if not ignited

• Ignition at von = 25kV/cm

– Fixed power regime at low current

– Resistor regime at high current
R ≈ voff / imin

• Extinction at voff = 5kV/cm, imin = 1 A
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+Exercise 12: Light arc

Model a simplified light arc!

• No current, if not ignited

• Ignition at von = 25kV/cm

– Fixed power regime at low current

– Resistor regime at high current
R ≈ voff / imin

• Extinction at voff = 5kV/cm, imin = 1 A

Test your model!

• What happens in the circuit here?

• What happens with an inductance?
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+Exercise 12: Light arc

You may use the DryFriction model as a template...
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