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Let us look at an extension of Forward Euler:

• We start by making a prediction step using forward Euler:

prediction: dxk = f(xk,tk) (We will now omit /dt in dx/dt)
xP

k+1 = xk + h ∙ dxk

• Using xP, we make a second guess of dx/dt and finally make a correction 
step, combining both guesses.

correction: dxP
k+1 = f(xP

k+1,tk+h)
xC

k+1 = xk + h/2 ∙ (dxk + dxP
k+1)

• This method is known as Heun‘s method.

• It involves two evaluations of f() but it is second order accurate.

Heun
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+Heun: Illustration
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+Heun: Illustration
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Why is this method second order accurate?

• Let us develop a 2nd order Taylor-Approximation for f().

xk+1 = xk + h ∙ f(xk,tk) + h2/2 ∙ df(xk,tk)/dt + O(h3)

xk+1 = xk + h ∙ f(xk,tk) + h2/2 ∙ (∂f(xk,tk)/∂x∙ dxk/dt + ∂f(xk,tk)/ ∂t) + O(h3)

xk+1 = xk + h ∙ f(xk,tk) + h2/2 ∙ (∂f(xk,tk)/∂x∙ f(xk,tk) + ∂f(xk,tk)/ ∂t) + O(h3)

Heun: Accuracy



© Dirk Zimmer, January 2023, Slide 6

Robotics and Mechatronics Centre

+

Why is this method second order accurate?

• If we reformulate Heun just in terms of xk, xk+1 and f() we get:

xk+1 = xk + h/2 ∙ ( f(xk + h∙f(xk,tk) ,tk+h) + f(xk,tk) )

• We now express f(xk + h∙f(xk,tk) ,tk+h) as linear 2D-Taylor Approximation of  f(x,t) 
around f(xk,tk):

f(xk+ h∙f(xk,tk) ,tk+h) = f(xk,tk) + h∙f(xk,tk)∙∂f(xk,tk)/∂x + h∙∂f(xk,tk)/ ∂t

• Plugging into the original equation yields:

xk+1 = xk + h/2 ∙ (f(xk,tk) + h∙ f(xk,tk)∙∂f(xk,tk)/∂x  + h∙∂f(xk,tk)/ ∂t + f(xk,tk) )

xk+1 = xk + h ∙ f(xk,tk) + h2/2 ∙ (∂f(xk,tk)/∂x∙ f(xk,tk) + ∂f(xk,tk)/ ∂t) 

• This is identical to the 2nd order Taylor approximation!

Heun: Accuracy



© Dirk Zimmer, January 2023, Slide 7

Robotics and Mechatronics Centre

+

Is Heun the only 2nd order Method with two evaluations of f()? 

• Let us generalize this procedure by introducing coefficients α and β:

prediction: dxk = f(xk,tk)
xP = xk + h ∙ β11 dxk

correction: dxP = f(xP,tk + α1h)
xk+1 = xk + h ∙ (β21dxk + β22dxP )

• The coefficients are typically arranged in the Butcher tableau

• On the right, you see the Butcher tableau of Heun.

Butcher tableau

0 0 0

α1 β11 0

1 β21 β22

0 0 0

1 1 0

1 0.5 0.5



© Dirk Zimmer, January 2023, Slide 8

Robotics and Mechatronics Centre

+

• If we repeat the analysis for the Heun formula with the generalized 
coefficients, we get:

xk+1 = xk

+ h ∙ (β21 + β22) ∙ f(xk,tk) 

+ h2/2 ∙ (2 β11β22∂f(xk,tk)/∂x∙ f(xk,tk) + 2 α1β22 ∂f(xk,tk)/ ∂t)

• In order to be 2nd order accurate, the following equations must hold:

β21 + β22 = 1
2β11β22 = 1

2α1β22 = 1

• This is evidently true for Heun, 
but there is a second solution. 
The midpoint rule:

Midpoint Rule

0 0 0

0.5 0.5 0

1 0 1
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Heun contains 2 sub-steps. If we allow n steps, we get more coefficients and 
can derive even higher-order methods:

step 0: dxP0 = f(xk,tk)

…

step i: xPi = xk + h ∙ (βi1dxP0 + βi2dxP1 + … + βiidxP(i-1))
dxPi = f(xPi,tk + αih)

…

final step n: xk+1 = xk + h ∙ (βn1dxP0 + βn2dxP1 + … + βnndxP(n-1))

Higher-Order RK Methods
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The best known algorithm from this class of numerical integration methods 
is the 4th-order accurate Runge-Kutta (RK4) algorithm characterized by 
the following Butcher tableau:

RK4

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1 1/6 1/3 1/3 1/6
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+RK4: Illustration
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+RK4: Illustration
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+RK4: Illustration
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+RK4: Illustration
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Over time, many RK methods have been developed:

• The number of non-linear equations grows rapidly with the order of the methods. 
Already for RK methods of order 5, there no longer exists a solution in 5 stages. 
More stages must be added in order to increase the number of parameters.

• In recent years, a sequence of yet higher-order RK methods were developed 
quite rapidly using computer algebra methods (Maple, Mathematica).

Various RK Methods

Developer Year Order # of Stages

Euler 1768 1 1

Runge 1895 4 4

Heun 1900 2 2

Kutta 1901 5 6

Huta 1956 6 8

Shanks 1966 7 9

Curtis 1970 8 11
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A nth-order method is more precise than a first-order method but it involves also 
more function evaluations per integration step. Is it worth its price?

• The answer 
is evident: 

YES!
It is worth 
every penny!

RK: Computational Effort
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What about the stability? 

RK: Stability
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What about the stability? 

• nth-order methods in n stages 
have  the same stability domain.
For orders higher than 5 the 
stability domain depends on 
the concrete Butcher tableau.

• Although, higher order methods gain a lot in precision, the stability domain grows 
rather modestly.

• For stiff systems, all RK-methods are almost as bad as FE. We are still bound to 
use very small step-sizes.

• However, for oscillating systems (with eigenvalues near the imaginary axis), the 
situation improves significantly from RK2 on.

RK: Stability
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In order to control the step-size, we would like to have an estimate of the local 
integration error for each step.

• One way, is to perform the same step twice using two different integration 
methods.

• Using their results (x1 and x2) we may estimate the relative error εrel

εrel =|x1 - x2| / max(|x1|,|x2|,δ) δ is a small fudge value > 0

• We can now compare εrel with the desired tolerance tolrel and control the step-
size accordingly

Local Integration Error Estimation
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It is not efficient to perform the same step twice. Hence, Fehlberg managed to 
integrate an RK4 method into an RK5 method. 

• Here is the Butcher Tableau for Runge-Kutte-Fehlberg 4/5:

• Now the estimation of the local integration error is virtually for free.

RKF 4/5

0 0 0 0 0 0 0

1/4 1/4 0 0 0 0 0

3/8 3/32 9/32 0 0 0 0

12/13 1932/2197 -7200/2197 7296/2197 0 0 0

1 439/216 -8 3680/513 -845/4104 0 0

1/2 -8/27 2 -3544/2565 1859/4104 -11/40 0

x1 25/216 0 1408/2565 2197/4104 −1/5 0

x2 16/135 0 6656/12825 28561/56430 −9/50 2/55
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Using εrel =|x1 - x2| / max(|x1|,|x2|,δ), we can develop a step-size control for RKF 4/5

• x1 is a 4th order approximation whereas x2is a 5th order approximation 

• Hence the relative error εrel is proportional to h5

• It is therefore meaningful to state:

εrel /tolrel = (hold / hnew)5

➔ hnew =  5 tolrel/εrel hold

• In this way, if the error is too large, the next step is reduced, and if the error is 
unnecessarily small, the next step is increased.

• This is an optimistic strategy since steps are never repeated, even if the error is 
excessively large

Step-Size Control
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• So far, every integration step was independent from its preceding integrations 
steps.

• At each step, we have performed a single-step (with some sub-steps). The 
information contained in the previous integration steps has been discarded.

• Hence the RK methods are called single-step methods.

• But there are also multi-step methods….

Single-Step
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• The idea behind every multi-step method is to generate a higher-order method 
by a polynomial approximation of the previous steps.

• The figure below illustrates this principle:

Multi-Step
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• Let p() be the polynomial that approximates the last n-1 steps: xk+1, xk … xk-n+1

• We can then generate a nth-order method by solving the following equation for 
xk+1:

f(xk+1,tk+1) = dp(xk+1,tk+1)/dt

• Hence this represents an implicit method (like BE).

Backwards Difference Formula
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• Let p() be the polynomial that approximates the last n-1 steps: xk+1, xk … xk-n+1

• We can then generate a nth-order method by solving the following equation for 
xk+1:

f(xk+1,tk+1) = dp(xk+1,tk+1)/dt

• Hence this represents an implicit method (like BE).

• Remark: Since this is an implicit method, it can also be directly applied to the 
implicit DAE form 0 = F(dx/dt,x,u,t):

0 = F(dp(xk+1,tk+1)/dt, xk+1,uk+1tk+1)

These kind of solvers can also be applied on systems that have not undergone 
index-reduction (but it is not necessarily an efficient way to do so..)

Backwards Difference Formula
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• If we perform the integration with a fixed step-size, all points for the polynomial 
approximation are equally-distant spaced in time. This enables the usage of 
Newton-Gregory polynomials for p().

• dp(xk+1,tk+1)/dt can be expressed as weighted sum of xk:

dp(xk+1,tk+1)/dt ∙ h = α1xk+1 + α2xk + … + αn+1xk-n+1

• This leads to the famous BDF methods:

Backwards Difference Formula

α1 α2 α3 α4 α5 α6

BDF 1 1 -1

BDF 2 3/2 -2 1/2

BDF 3 11/6 -3 3/2 -1/3

BDF 4 25/12 -4 3 -4/3 1/4

BDF 5 137/60 -5 5 -10/3 5/4 -1/5
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+BDF2 Example
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What about the stability? 

BDF: Stability



© Dirk Zimmer, January 2023, Slide 29

Robotics and Mechatronics Centre

+

What about the stability? 

• BDF 1 is Backward Euler

• BDF 2 is still maintains the 
analytical stability

• The region of unstability grows 
significantly with the number of the order.

• From BDF 3 on, the unstable region overlaps the imaginary axis.

• Hence the higher order BDF methods (from 5 on) behave strangely for oscillatory 
systems.

• Thanks to their suitability for the simulation of stiff systems and due to their 
simplicity, the BDF algorithms are among the most widely used numerical ODE 
solvers for the simulation of dynamic systems.

BDF: Stability
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• There are some extra problems involved with multi-step methods in general

• One of them is the startup problem.

• We simply assumed, that there for an nth-order method, there are n-1 past values 
available. At start, this assumption is obviously violated.

• Essentially, there are two solutions:

– Work yourself up: Start with BDF 1, then continue with BDF 2, BDF 3 and so on…
Unfortunately, the usage of BDF 1 may enforce small step-sizes initially.

– Kick-start using a single-step method of the appropriate order.
For instance use 3 steps of RK4 to start BDF 4. However, since RK4 cannot cope with 
stiff systems, small step-sizes might again be enforced.

– Most probably the best choice is to use and implicit Runge-Kutta (see later on) method 
as Kick-start

Multi-Step: Startup
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• The other problem is step-size control.

• We have assumed a fixed step-size so far. 

• If we want to adapt the step-size, we have to “relocate” our past integration 

values xk, xk-1, … xk-n+1

Multi-Step: Startup
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• This relocation of xk, xk-1, … xk-n+1 can be performed with linear operations only 
and does not involve any loss of precision since the polynomial g() remains 
unchanged.

• However, the adaption of step-size is relatively costly. Controlling the step-size 
for each step is not recommendable. Consequently, a more conservative step-size 
has to be chosen so that overhasty changes can be avoided and the same step-
size can be maintained over larger time-spans

Multi-Step: Startup
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• DASSL is a variable-order, variable step-size multistep method.

• Why variable-order? A high order reduces the convergence area of the implicit 
solution. You may have to take smaller step-sizes than needed for precision just 
to stay within the convergence intervall.  

• Hence, order reduction helps robustness and DASSL is very robust.

• DASSL basically combines the BDF Formulas of different order

• The clue is the error estimation. Basic idea: In a normal situation you would 
expect the error estimate to decrease from order to order… When this is not the 
case, you may want to reduce your order and take smaller steps.

Multi-Step: On DASSL



© Dirk Zimmer, January 2023, Slide 34

Robotics and Mechatronics Centre

+

• There is no explicit method that is numerically stable for all analytical stable 
systems.

• There is no implicit multistep method of order > 2 that is numerically stable for all 
analytical stable systems.

Multi-Step: 2nd Dahlquist Barrier
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+Overview

Explicit Implicit

Single-Step Runge-Kutta

Multi-Step BDF

(DASSL)

So far, we have investigated two major classes of integration methods
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+Overview

Explicit Implicit

Single-Step Runge-Kutta

Multi-Step
?

BDF

(DASSL)

What about explicit multi-step methods. They would be great for real-
time simulation or?
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There are explicit multi-step methods available. There are called, for 
instance, Adams-Bashforth (AB).

• Whereas the implicit multi-step methods are based on 
polynomial interpolation, the explicit methods are based on 
polynomial extrapolation. This is potentially dangerous.

• It is therefore no surprise, that 
AB performs very poorly 
with respect to stability.

• Indeed, the numerical
stable region shrinks
for higher-order methods

• AB is practically only used 
for non-stiff, linear systems.

Adams-Bashforth
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+Overview

Explicit Implicit

Single-Step Runge-Kutta
?

Multi-Step Adams-Bashforth BDF

(DASSL)

Wouldn’t implicit single step methods be very suited for the simulation 
of stiff systems?
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The classic RK methods enabled an explicit computation since the Butcher 
Tableau does not contain entries at or above the diagonal.

• Here is the Butcher Tableau of 3rd order Radau IIa. It requires an implicit 
solver.

Implicit RK

1/3 5/12 -1/12

1 3/4 1/4

1 3/4 1/4

dxP0 = f(xk + 5h/12dxP0 – h/12dxP1 , tk + h/3)

dxP1 = f(xk + 3h/4dxP0 + h/4dxP1, tk + h)

➔ xk+1 = xk + 3h/4dxP0 + h/4dxP1

dxP0 and dxP1 need to be found by an iterative 
solver. Hence, Radau IIa (3rd order) requires 
twice as many iteration variables as BE and a 
single step is though (roughly) 23=8 times more 
expensive as an BDF step of the same order.
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The classic RK methods enabled an explicit computation since the Butcher 
Tableau does not contain entries at or above the diagonal.

• Here is the Butcher Tableau of 3rd order Radau IIa. It requires an implicit 
solver.

• Implicit RK methods behave 
excellently w.r.t. stability

• However, a step of IRK is 
significantly more expensive 
than a step of BDF of the
same order.

• However, IRK feature a more
flexible step-size control and
can compensate for this in 
highly non-linear or discon-
tinuous systems

Implicit RK

1/3 5/12 -1/12

1 3/4 1/4

1 3/4 1/4
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+Overview

Explicit Implicit

Single-Step Runge-Kutta Implicit Runge-Kutta
(Radau IIa)

Multi-Step Adams-Bashforth BDF

(DASSL)

So.. this is what we have learned today:
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+Convergence

We haven’t spoken about convergence yet.

• For any implicit solver we do simply assume that our iterative numerical 
solver finds the solution but this only happens when the initial guess 
value is in the convergence area.

• The initial guess value stems from the last integration step. If this is 
outside the convergence area, we have to lower step-size.

• With higher orders the size of convergence area, typically shrinks. Hence 
lowering the order might enable larger steps to be taken.

• Even for explicit solvers, the model-evaluation function still may contain 
non-linear parts to be iteratively solved. In this case, many of the above 
also holds true.

• Stepsize control works good for precision but is hardly optimized for 
convergence. Hence it can happen that by lowering precision, your 
simulation becomes slower… (or fails at all)…
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+Precision vs Stability vs Convergence

Depending on your model, your simulation performance might be limited by either 
stability constraints, convergence constraints or precision requirements.

For many, many practical applications, stability and convergence are the greater 
source of trouble than sheer precision.

Stability

Convergence

Precision
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+FMI Standard 

supplier 1 supplier 3

ECS Fuel Cell Generator Converter Elec. 
Distribution

supplier 2 supplier 4 supplier 5

tool 1 tool 2 tool 3 tool 4 tool 5

Solution: Functional Mock-up Interface (FMI)

▪ Couple different tools for system simulation

▪ www.fmi-standard.org

http://www.fmi-standard.org/
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+FMI Standard

FMI for Model 
Exchange

• dx/dt = f(x,u,t)

• does not include
ODE-solver

FMI for Co-Simulation

• xt+h = f(xt,u,t)

• includes ODE solver

▪ Both version of FMI support hybrid systems with discrete 
events.

▪ Standard takes into account many solutions for large, stiff 
systems



Questions ?


	Lecture10b
	Virtual Physics�Equation-Based Modeling
	Heun
	Heun: Illustration
	Heun: Illustration
	Heun: Accuracy
	Heun: Accuracy
	Butcher tableau
	Midpoint Rule
	Higher-Order RK Methods
	RK4
	RK4: Illustration
	RK4: Illustration
	RK4: Illustration
	RK4: Illustration
	Various RK Methods
	RK: Computational Effort
	RK: Stability
	RK: Stability
	Local Integration Error Estimation
	RKF 4/5
	Step-Size Control
	Single-Step
	Multi-Step
	Backwards Difference Formula
	Backwards Difference Formula
	Backwards Difference Formula
	BDF2 Example
	BDF: Stability
	BDF: Stability
	Multi-Step: Startup
	Multi-Step: Startup
	Multi-Step: Startup
	Multi-Step: On DASSL
	Multi-Step: 2nd Dahlquist Barrier
	Overview
	Overview
	Adams-Bashforth
	Overview
	Implicit RK
	Implicit RK
	Overview
	Convergence
	Precision vs Stability vs Convergence
	FMI Standard 
	FMI Standard
	Questions ?


