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• We have learned that for linear systems, the state-space form can be 
described by four sub-matrices A, B, C, and D.

dx/dt = Ax + B(u, t)

y = Cx + D(u, t)

Recap: State-Space Form

x1 x2 u t

dx1/dt X X

dx2/dt X X X

y X

A B

C D
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• For the actual dynamics, the A matrix is for primary interest.

dx/dt = Ax

Recap: State-Space Form

x1 x2 u t

dx1/dt X X

dx2/dt X X X

y X

A
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Let us look at the general one-dimensional linear system

dx/dt = ax (with xstart = 1)

Definition:

• a > 0: 
The system is unstable

• a < 0: 
The system is stable

• a = 0: 
The system is marginally stable

Recap: Stability in 1D Systems
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What about the multi-dimensional case?

dx/dt = Ax 

• We can perform an eigenvalue decomposition:

A = QΛQ-1

where Q consists in the eigenvectors and Λ is a diagonal matrix 
containing the eigenvalues λ1, λ2, …, λn.

• The system is asymptotically stable iff all eigenvalues are smaller 
than 0.

• The system is marginaly stable if all eigenvalues are smaller or 
equal than 0.

• The system is unstable otherwise.

• For complex eigenvalues, the real part is decisive

Recap: Stability in nD Systems
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So far, we have examined the analytical stability of our system. But 
there is a crucial question for the simulation of a system:

Can the applied scheme for time-integration change
the stability of the system?

• Let us start with an analysis of Forward Euler (FE):

• Remember:

Analytical vs. Numerical Stability
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Let us apply the Forward Euler scheme on the system:

dx/dt = f(x(t),t) = Ax(t)

• By discretizing time with step-width h we get:

x(t+h) =  x(t) + h ∙ f(x(t),t)
➔ x(t+h) = x(t) + h ∙ Ax(t)
➔ x(t+h) = (I + hA) x(t)

• Applying FE transforms the continuous function x(t) into a series xk.

➔ xk+1 = (I + hA) xk

➔ xk+1 = Fxk with F = I + hA

Numerical Stability: FE
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When is this series numerically stable?

xk+1 =  Fxk 

• This is the case when all eigenvalues of F are located inside the unit circle 
of complex numbers. 

• Each integration scheme has its own formula for F. In case of FE, it is: 

F = I + hA

• We would like to express the eigenvalues of F in terms of the eigenvalues 
of A

F = I + hA
➔ F = QIQ-1 + hQΛQ-1

➔ F = Q(I + hΛ) Q-1

• By assuming h=1, the eigenvalues of F are the eigenvalues of A plus 1.0 + 
0i.

Numerical Stability: FE
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By applying FE, the stability region of the system A has been reduced 
from the half-plane to a circle of radius 1/h (in the plot, the axes are scaled by h).

• Forward Euler is potentially destabilizing.

Numerical Stability: FE
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To get a qualitative correct result for a stable system, we have to 
choose h small enough, so that all eigenvalues are located inside the 
stable region.

➔ hmax = d/|λ1|

Numerical Stability: FE
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There is an alternative Euler scheme: Backward Euler.

• In contrast to Forward Euler, we take the time-derivative of t+h:

x(t+h) =  x(t) + h ∙ f(x(t+h),t+h)

• If we use Backward Euler to integrate forward in time, we have to 
solve this equation system for x(t+h) by an iterative solver 
(Newton’s method or similar) with the residual equation:

0 =  x(t) + h ∙ f(x(t+h),t+h) - x(t+h)

• In contrast to Forward Euler, there is no explicit computational form 
available. Hence Backward Euler is an implicit method. 
(FE is an explicit method)

Backward Euler
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What is the numerical stability domain of Backward Euler?

• The answer can be derived without needing any formulas.

• If we compute backwards in time, stable systems become unstable 
and vice versa.

• If we compute backwards in time, BE becomes computational 
identical to FE (computed forward in time)

• Hence the stability domain is simply flipped to the other side.

x(t+h) =  x(t) + h ∙ f(x(t+h ),t+h )
➔ x(t+h) = x(t) + h ∙ Ax(t+h )
➔ (I - hA) x(t+h) = x(t)
➔ x(t+h) = (I - hA)-1 x(t)

➔ xk+1 = (I - hA)-1 xk

➔ xk+1 = Fxk with F = (I – hA)-1

Numerical Stability: BE
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By applying BE, the unstable region in the right-half plane collapses to a 
circle of radius 1/h.

• Backward Euler causes a numerical stabilization.

Numerical Stability: BE
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FE and BE (h=0.02s) are applied on a marginally stable system.

FE vs. BE
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For Real-Time Applications that use FE, it is sometimes possible to fight 
the destabilizing drift and get better solutions.

• The following system represents a marginally stable spring system:

dv/dt = -s∙C/M

ds/dt = v

• The total energy in this system is the potential energy in the spring 
plus the kinetic energy:

E = ½∙C∙s2 + ½∙M∙v2

Fight the Drift



© Dirk Zimmer, January 2023, Slide 19

Robotics and Mechatronics Centre

+

• We know that energy is conserved hence:

E = ½∙C∙s2 + ½∙M∙v2 = const

• This means that s and v are always placed on an ellipse. To fight the 
drift, we can project on this ellipse after each integration step. For 
this example, it is particularly easy.

• We compute a scaling factor out the current total energy E and the 
initial total energy E0…

p = (E0/E)½

• …and apply this factor to s and v

s’ = s ∙ p

v’ = v ∙ p

Fight the Drift
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This is the corresponding Python Code

open file for ouput
fh = open("out.dat","w")

#perform time-integration
while time < tStop:

dv_dt = -s*C/M
ds_dt = v
v += h*dv_dt
s += h*ds_dt
E = 0.5*C*s*s + 0.5*M*v*v
p = sqrt(E0/E)
s *= p
v *= p
time += h
print(time,"\t",s,"\t",v,file=fh)

print("See out.dat for simulation result")
fh.close()

Fight the Drift
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And here the simulation results for FE and FE with projection.

Fight the Drift
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Forward Euler and Backward Euler are the origin of all higher-order 
methods

• All explicit higher-order methods degenerate to FE for h→ 0
(supposing a finite numerical precision).

• All implicit higher-order methods degenerate to BE for h→ 0
(supposing a finite numerical precision).

• Most explicit and implicit methods share somehow their behavior 
w.r.t stability with their first-order counterparts.

• Both FE and BE are totally unsuited for marginally stable systems, 
since the stability domain shares only a single point with the 
imaginary axis. Fortunately, there are higher-order methods that 
share larger fractions of their stability domain with the imaginary 
axis.

FE vs. BE
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What are stiff systems?

• We call a linear system stiff, if it is stable and its eigenvalues vary a 
lot in terms of their real parts.

• Non-linear systems are called stiff, if they are stable and exhibit 
both fast and slow modes in their behavior. The linearization of 
such systems leads to stiff linear systems.

• These systems cannot be simulated efficiently by means of any 
explicit method (FE), because we would need very small time steps 
to move those eigenvalues (of either the system itself or of its 
linearization) into the numerical stability domain.

• For the efficient simulation of stiff systems, implicit integration 
algorithms are required!

Stiff Systems
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Example: 
A = 

• We can perform an eigenvalue decomposition:

A =

• The system is stable and the eigenvalues are separation by a 
factor 100. The system is stiff.

• We are going to simulate the system using FE and BE for different 
step sizes.

Stiff Systems: Example
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FE and BE are applied on the stiff system (h=0.02).

Stiff Systems: FE vs. BE
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FE and BE are applied on the stiff system (h=0.2).

Stiff Systems: FE vs. BE
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FE and BE are applied on the stiff system (h=2).

Stiff Systems: FE vs. BE
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