Virtual Physics

02.02.2021

Exercise 11: Integration Methods

Task 1: (from Exam WS 2010/2011)

Below you find the Butcher Tableau of an RK method of $3^{\text {rd }}$ order.

0	0	0	0
$1 / 3$	$1 / 3$	0	0
$2 / 3$	0	$2 / 3$	0
1	$1 / 4$	0	$3 / 4$

Perform one integration step of this method on the following system!

$$
\mathrm{dx} / \mathrm{dt}=-\mathrm{x}^{2}-2+3 \mathrm{t}
$$

Start at $\mathrm{t}=0$ with $\mathrm{x}_{\mathrm{t}=0}=1$. The step-size h is 1 .

Return the result for $\mathrm{x}_{\mathrm{t}=1}$ as well as for the two-substeps
Compute with rational numbers.
Solution:

$$
\begin{gathered}
\dot{x}_{t=0}=-x_{t=0}^{2}-2+3 t=-1-2+0=-3 \\
x_{P 1}=x_{t=0}+\frac{h}{3} \dot{x}_{t=0}=1-\frac{1}{3} 3=0 \\
\dot{x}_{P 1 \left\lvert\, t=\frac{1}{3}\right.}=-x_{P 1}^{2}-2+3 t=0-2+1=-1 \\
x_{P 2}=x_{t=0}+\frac{2 h}{3} \dot{x}_{P 1}=1-\frac{2}{3}=\frac{1}{3} \\
\dot{x}_{P 2 \left\lvert\, t=\frac{2}{3}\right.}=-x_{P 2}^{2}-2+3 t=-\frac{1}{9}-2+2=-\frac{1}{9} \\
x_{t=1}=x_{t=0}+\frac{h}{4} \dot{x}_{t=0}+\frac{3 h}{4} \dot{x}_{P 2}=1-\frac{3}{4}-\frac{3}{4 \cdot 9}=\frac{12}{12}-\frac{9}{12}-\frac{1}{12}=\frac{1}{6}
\end{gathered}
$$

Task 2: (from Exam WS 2011/2012)
Below you find the coefficients for the BDF methods of different orders.

	$\alpha_{\mathrm{t}+\mathrm{h}}$	α_{t}	$\alpha_{\mathrm{t}-\mathrm{h}}$	$\alpha_{\mathrm{t}-2 \mathrm{~h}}$	$\alpha_{\mathrm{t}-3 \mathrm{~h}}$
BDF 1	1	-1			
BDF 2	$3 / 2$	-2	$1 / 2$		
BDF 3	$11 / 6$	-3	$3 / 2$	$-1 / 3$	
BDF 4	$25 / 12$	-4	3	$-4 / 3$	$1 / 4$

Perform 3 integration steps of the highest applicable BDF method on the following system!

$$
d x / d t=2 x-t+1
$$

Start at $\mathrm{t}=0$ with $\mathrm{x}_{\mathrm{t}=0}=-1$. The step-size h is 1 .

Return the result for $\mathrm{x}_{\mathrm{t}=1}, \mathrm{x}_{\mathrm{t}=2,2}$ and $\mathrm{x}_{\mathrm{t}=3}$.
Compute with rational numbers.
Solution: We use short-hand notation x_{a} for $x_{t=a}$
Step 1 with BDF1

$$
\begin{gathered}
x_{1}-x_{0}=h\left(2 x_{1}-t+1\right)=2 x_{1} \\
x_{1}=-x_{0}=1
\end{gathered}
$$

Step 2 with BDF2

$$
\begin{aligned}
\frac{3}{2} x_{2}-2 x_{1}+\frac{1}{2} x_{0} & =h\left(2 x_{2}-t+1\right) \\
\frac{3}{2} x_{2}-2-\frac{1}{2} & =2 x_{2}-2+1 \\
-\frac{1}{2} x_{2} & =\frac{3}{2} \\
x_{2} & =-3
\end{aligned}
$$

Step 3 with BDF3

$$
\begin{gathered}
\frac{11}{6} x_{3}-3 x_{2}+\frac{3}{2} x_{1}-\frac{1}{3} x_{0}=h\left(2 x_{3}-t+1\right) \\
\frac{11}{6} x_{3}+9+\frac{3}{2}+\frac{1}{3}=2 x_{3}-2 \\
-\frac{1}{6} x_{3}=-11-\frac{3}{2}-\frac{1}{3} \\
x_{3}=66+9+2=77
\end{gathered}
$$

