Virtual Physics

02.02.2021

Exercise 10: Stability Analysis (Solution)

Task 1:

Solution starts with linearization around \boldsymbol{x}_{P} with $\boldsymbol{x}=\boldsymbol{x}_{p}+\Delta \boldsymbol{x}$ and \boldsymbol{x} representing the vector $\binom{x}{y}$

$$
\binom{\dot{x}}{\dot{y}}=0+\left(\begin{array}{cc}
0 & \frac{1}{4} \\
-2 x_{p}-1 & -1
\end{array}\right)\binom{\Delta x}{\Delta y}
$$

if x_{P} represents an equilibrium point
Characteristic polynomial to retrieve eigenvalues:

$$
\begin{gathered}
\left(\begin{array}{cc}
0-\lambda & \frac{1}{4} \\
-2 x_{p}-1 & -1-\lambda
\end{array}\right) \\
(0-\lambda)(-1-\lambda)+\frac{1}{2} x_{p}+\frac{1}{4}=0
\end{gathered}
$$

At $x=0$:

$$
\lambda^{2}+\lambda+\frac{1}{4}=0=\left(\lambda+\frac{1}{2}\right)\left(\lambda+\frac{1}{2}\right)
$$

...results in two negative eigenvalues and hence the system is approx. stable around this equilibrium point.

At $x=-1$:

$$
\lambda^{2}+\lambda-\frac{1}{4}=0
$$

The polynomial is an upwards shaped parabola with a negative value for $\lambda=0$ and hence will have a zero-crossing (aka solution) for positive λ. There is a positive eigenvalue. Hence the system is unstable around this equilibrium point.

Task 2:

The eigenvalues of four linear systems $(\mathrm{dx} / \mathrm{dt}=\mathrm{Ax})$ are depicted.

Mark what is true (12 points):

