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Exercise 10:  Stability Analysis (Solution) 

Task 1:  

Solution starts with linearization around �� with � = �� + Δ� and � representing the vector  �
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if �� represents an equilibrium point 

Characteristic polynomial to retrieve eigenvalues: 
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At � = 0: 
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…results in two negative eigenvalues and hence the system is approx. stable around this equilibrium 

point. 

At � = −1: 
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The polynomial is an upwards shaped parabola with a negative value for � = 0 and hence 

will have a zero-crossing (aka solution) for positive �. There is a positive eigenvalue. Hence 

the system is unstable around this equilibrium point. 

 

  



Task 2:  

The eigenvalues of four linear systems (dx/dt = Ax) are depicted. 

 

Mark what is true (12 points): 

 A B C D 

The system is stable 

 
  X X 

The system is unstable 

 
X    

The system is marginally stable 

 
 X   

The system is stiff 

 
   X 

The system is numerically stable for 

Forward Euler with step-size h = 0.5 
  X  

 


