Virtual Physics

02.02.2021

Exercise 10: Stability Analysis (Solution)

Task 1:

Solution starts with linearization around x_P with $x = x_p + \Delta x$ and x representing the vector $\begin{pmatrix} x \\ y \end{pmatrix}$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = 0 + \begin{pmatrix} 0 & \frac{1}{4} \\ -2x_p - 1 & -1 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

if x_P represents an equilibrium point

Characteristic polynomial to retrieve eigenvalues:

$$\begin{pmatrix} 0-\lambda & \frac{1}{4} \\ -2x_p-1 & -1-\lambda \end{pmatrix}$$
$$(0-\lambda)(-1-\lambda) + \frac{1}{2}x_p + \frac{1}{4} = 0$$

At x = 0:

$$\lambda^2 + \lambda + \frac{1}{4} = 0 = \left(\lambda + \frac{1}{2}\right)\left(\lambda + \frac{1}{2}\right)$$

...results in two negative eigenvalues and hence the system is approx. stable around this equilibrium point.

At x = -1:

$$\lambda^2 + \lambda - \frac{1}{4} = 0$$

The polynomial is an upwards shaped parabola with a negative value for $\lambda = 0$ and hence will have a zero-crossing (aka solution) for positive λ . There is a positive eigenvalue. Hence the system is unstable around this equilibrium point.

Task 2:

The eigenvalues of four linear systems (dx/dt = Ax) are depicted.

Mark what is true (12 points):

	Α	В	С	D
The system is stable			X	X
The system is unstable	X			
The system is marginally stable		X		
The system is stiff				Х
The system is numerically stable for Forward Euler with step-size $h = 0.5$			X	