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Christian Ott∗, Alin Albu-Scḧaffer∗, Andreas Kugi∗∗ and Gerd Hirzinger∗

∗German Aerospace Center (DLR) - Institute of Robotics and Mechatronics
∗∗Saarland University - Chair of System Theory and Automatic Control

christian.ott@dlr.de

Abstract— This paper addresses the impedance control
problem for flexible joint manipulators. An impedance con-
troller structure is proposed, which is based on an exact
decoupling of the torque dynamics from the link dynamics.
A formal stability analysis of the proposed controller is
presented for the general tracking case. Preliminary exper-
imental results are given for a single flexible joint.

I. I NTRODUCTION

Whenever a robotic manipulator is supposed to get in
contact with its environment in order to perform some
manipulation tasks, a compliant behaviour of the manip-
ulator is desired. The achievement of such a compliant
behaviour by control therefore got a classical problem
in robotics research [3]. For the case of a manipulator
with rigid joints, various approaches to this problem have
been studied in the literature and led to control techniques
such as impedance control, admittance control or stiffness
control. Compared to this, only little work has been spent
on the compliant control problem for robotic manipulators
with flexible joints.
Maybe the most obvious approach to the impedance
control problem for a robot with flexible joints is based
on a singular perturbation analysis of the flexible joint
model. From this perspective an impedance controller may
be designed in the same manner as for a robot with
rigid joints. The flexibility of the joints is then treated
in a sufficiently fast inner torque control loop. While this
approach is very attractive at a first glance due to the
simplicity of the resulting controllers, it has the conceptual
problem that the singular perturbation approach does not
admit a formal stability analysis for the complete model of
the flexible joint robot without referring to an approximate
consideration.
In contrast to this approach, in this paper an impedance
controller is presented which fully accounts for the flex-
ibility of the joints. The proposed controller structure is
based on an internal torque controller which decouples the
torque dynamics from the link dynamics exactly and thus
leads to a cascaded structure. The desired torque for this
inner loop results from a standard impedance control law.
Stability results from the theory of cascaded systems [8]
can then be used to prove the stability of the overall closed

loop system.
Notice that the proposed combination of a decoupling
based torque controller with an outer control law for the
link positions is strongly related to the works of Lin
and Goldenberg. While their design idea in [6] and [7]
is similar to the one followed in this paper, their focus
lies merely on the position control problem and leads to
different controllers. Consequently, their stability analysis
in [6] and [7] cannot be applied to the impedance control
problem in a straightforward manner.
The paper is organized as follows. First, the considered
model is given in Section II. In Section III the pro-
posed torque controller is presented and compared to a
simpler singular perturbation based controller. Next, the
impedance control law is given in Section IV. Section
V contains the stability proof of the decoupling based
torque controller from Section III in combination with the
outer impedance controller from Section IV. Finally, an
experimental comparison of the proposed controller to a
singular perturbation based controller is presented for a
single flexible joint in Section VI.

II. CONSIDEREDMODEL

In this paper a simplified model of a robot withn
flexible joints is considered as proposed in [12]

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext , (1)

Bθ̈ + τ = τm , (2)

τ = K(θ − q) . (3)

Herein,q ∈ <n is the vector of link positions andθ ∈ <n
the vector of motor positions. The vector of transmis-
sion torques is denoted byτ . Equation (1) contains the
symmetric and positive definite mass matrixM(q), the
vector of Coriolis and centripetal torquesC(q, q̇)q̇ and
the vector of gravitational torquesg(q). B andK are
diagonal matrices containing the motor inertias and the
stiffnesses for the individual joints.τm is the vector of
motor torques which will serve as the control input and
τ ext is a vector of external torques which are exhibited
by the manipulator’s environment.
Herein it is furtheron assumed that the external torques



τ ext can be measured. This can be realized at least in
applications where these torques at joint level result from
forces and torques at the manipulator’s endeffector and can
therefore be measured e.g. by a 6DOF force/torque-sensor.
For the further analysis, the model (1)-(2) may be rewritten
by choosing(qT , q̇T , τT , τ̇T )T as state variables

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext , (4)

BK−1τ̈ + τ = τm −BM(q)−1(τ + τ ext−
C(q, q̇)q̇ − g(q)) . (5)

Based on this model a cascaded control design procedure
will be presented in the next sections. An outer loop
impedance controller (treated in Section IV) generates a
desired torque vectorτ d for an inner torque control loop.
The design of the torque controller is treated in the next
section.

III. T ORQUECONTROLLER

Obviously, some undesired terms of the torque dy-
namics equation (5) may be easily compensated with a
feedback compensation of the form

τm = u+BM(q)−1(τ+τ ext−C(q, q̇)q̇−g(q)) , (6)

with the new input variablesu. This leads to the system

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext , (7)

BK−1τ̈ + τ = u . (8)

From replacing the torque variables1 by introducing a
desired torque-variableτ d and a torque error variablez

z = τ − τ d , (9)

we obtain

M(q)q̈ +C(q, q̇)q̇ + g(q) = z + τ d + τ ext
BK−1(z̈ + τ̈ d) + z + τ d = u .

Based on this system two different torque controllers are
given in the following. The first controller results from
a singular perturbation approach and shall be used as a
reference for the second controller later on in the experi-
ments. The second controller achieves an exact decoupling
of the torque dynamics from the link dynamics. This exact
decoupling has the conceptual advantage that it admits, in
combination with the impedance controller from the next
section, a stability analysis for the complete flexible model
without the need to refer to an approximate consideration
as in the case of the singular perturbation based torque
controller.

1which means shifting the steady state to0

A. Singular Perturbation Based Controller

It shall not be in the scope of this paper to treat the sin-
gular perturbation analysis of flexible joint robots in detail.
Instead we refer to [4] for a comprehensive treatment of
the theoretical basis. In a singular perturbation analysis of
(4)-(5), the flexible joint model is virtually split up into a
fast and a slow subsystem for the joint torquesτ and the
link positionsq respectively. From these two subsystems
it is then possible to design an inner loop controller forτ
and an outer loop controller forq separately.
For this study a singular perturbation based controller
similar to the one in [9] is considered

u = τ d +BK−1(−Ksτ̇ −Ktz) , (10)

which is (under a singular perturbation consideration)
sufficient to stabilize the joint torque dynamics around
the equilibrium pointτ = τ d. The matricesKs andKt

herein are some positive definite controller gain matrices.
Notice that2, the controller (10) results in the following
link dynamics:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ d + τ ext .

In the following the controller of (10) is extended by some
additional terms, which achieve an exact decoupling of
the torque dynamics but are not necessary from a singular
perturbation point of view.

B. Decoupling Based Torque Controller

It is easy to see that an exact feedback decoupling of
the torque dynamics may be obtained by a feedback law
of the form

u = τ d +BK−1(τ̈ d −Ksż −Ktz) . (11)

Again, the matricesKs andKt are chosen as some pos-
itive definite matrices. This leads to a system in cascaded
form

M(q)q̈ +C(q, q̇)q̇ + g(q) = z + τ d + τ ext , (12)

z̈ +Ksż + (Kt +KB−1)z = 0 . (13)

Notice that compared to (10) the controller in (11) also
contains the time derivatives of the desired torqueτ d up
to the second order.
In the next section, the design ofτ d is treated such that
a desired impedance behaviour is achieved.

IV. TASK SPACE IMPEDANCE CONTROLLER

In this section an impedance controller is presented
which can be used in combination with the two torque
controllers from the last section.
It is assumed that the desired behaviour of the manipulator
can be described in task-space coordinates3 x ∈ <m and

2again under a singular perturbation consideration
3e.g. describing the endeffector movement



the mapping between these coordinates and the link angles
is knownx = f(q). The relevant coordinate mappings for
the first and the second derivatives can then be computed
via the JacobianJ(q) = ∂f(q)

∂q as

ẋ = J(q)q̇ , (14)

ẍ = J(q)q̈ + J̇(q)q̇ . (15)

For reasons of simplicity only the nonredundant and
nonsingular case shall be treated herein, thus it is assumed
thatm = n and that the JacobianJ(q) has full rank in
the considered region of the workspace. A description of
an appropriate singularity treatment can be found in [5].
It is furtheron assumed that in the considered workspace
the vector functionf(q) is a one-to-one mapping. Under
these assumptions the coordinatesx completely describe
the rigid-body-behaviour of the robot and can be used as
generalized coordinates.
Notice that, while the above-mentioned assumptions on
the coordinatesx are trivially fulfilled for a joint space
consideration (withx = q) in the whole workspace, in
the case of a desired impedance behaviour in Cartesian
coordinates it is generally not possible to find coordinates
which fulfill the assumptions globally [13].
However, the analysis in this paper focuses on globally
valid statements and is therefore formally based on a
globally valid set of coordinatesx.
With these assumptions, the external torquesτ ext can also
be written in task space coordinates asF ext via the well
known relationship

τ ext = J(q)TF ext (16)

and equation (12) may also be rewritten as4

Λ(x)ẍ+ µ(x, ẋ)ẋ+ p(x) = (17)

J(q)−T (z + τ d) + F ext ,

with the equivalent task space mass matrix

Λ(x) = J(q)−TM(q)J(q)−1 , (18)

µ(x, ẋ) = J(q)−TC(q, q̇)J(q)−1 −Λ(q)J̇(q)J(q)−1(19)

andp(x) = J(q)−Tg(q).
It is well known that in the case of a rigid robot an
arbitrary second order impedance behaviour can be (at
least theoretically) realized by feedback. It can be shown
that for a flexible joint robot this is not possible exactly,
therefore only an approximation can be expected here. By
comparing the structure of equation (17) to the dynamical
equations of a robot with rigid joints one can see that
the only difference is the occurrence of the torque error
termJ(q)−Tz in (17). If for the design of the impedance
controller this term is neglected, thenτ d can be chosen
according to an impedance controller for a robot with rigid

4The substitutionq = f−1(x) may be obmitted in the following.

joints.
In our previous experiments with singular perturbation
based controllers the realization of a desired second order
impedance behaviour with an arbitrary inertia turned out
to be very difficult [1]. Also, in many applications the
main focus merely lies on the realization of a desired
stiffness and damping behaviour. Consequently, it is also
considered herein that the desired behaviour in the task
space can be characterized by a positive definite damping
matrix Dd and a positive definite stiffness matrixKd,
while the manipulator’s mass matrix shall be maintained.
Thus, for a given trajectoryxd(t), the desired behaviour
of the manipulator with respect to an external forceF ext
is given by

Λ(x)ëx + (µ(x, ẋ) +Dd)ėx +Kdex = F ext (20)

ex = x− xd .

The desired trajectoryxd(t) is assumed to be continu-
ously differentiable up to the order two. For the desired
impedance behaviour, and under the above assumption
on J(q) and xd(t), three important properties shall be
mentioned:

Property 1: For F ext = 0, the system (20) with the pos-
itive definite matricesKd andDd is uniformly globally
asymptotically stable.

Property 2: For ẋd(t) = 0, the system (20) with the
positive definite matricesKd andDd gets time-invariant
and represents a passive mapping from the external force
F ext to the velocity errorėx.

Property 3: The matrixΛ̇(x) − 2µ(x, ẋ) is skew sym-
metric.

The proof of property 1 can be found, e.g., in [10].
Although it is drawn therein only for the case of joint
space coordinates (x = q), it is obviously also valid
for general coordinatesx under the above-mentioned
assumptions. Property 2 can be shown easily with the
storage functionVs = 1

2 ė
T
xΛ(x)ėx + 1

2e
T
xKdex.

Notice that property 2 is very important from a practical
point of view. For cases when the robot is to be expected
to get in contact with an unknown environment, a common
assumption is that the environment can be represented by a
passive5 system which is in feedback interconnection with
the robot. Then the above passivity property is sufficient
in order to preserve the stability of the whole system.
Obviously, for the case of a rigid joint robot (withz = 0),
the desired behaviour (20) can be achieved for the system
(17) by the following control law

τ d = g(q) + J(q)T (Λ(x)ẍd + µ(x, ẋ)ẋd
−Ddėx −Kdex) . (21)

5with respect to the input/output-pair(ėx,−F ext)



In the case of the flexible model, the controller (21) in
combination with the torque controller (11) leads to the
following closed loop dynamics

Λ(x)ëx + (µ(x, ẋ) +Dd)ėx +Kdex = (22)

F ext + J(q)−Tz ,
z̈ +Ksż + (Kt +KB−1)z = 0 . (23)

While the desired impedance characteristics is realized
only approximately for the flexible joint robot with the
described controller, as one can see from (22), property 1
and property 2 still hold for the system (22)-(23). This is
shown in detail in the next section.

V. STABILITY ANALYSIS

First we formulate the main result of this paper in form
of two propositions.

Proposition 1: For F ext = 0, the system (22)-(23) with
the positive definite matricesKs, Kt, Kd and Dd is
uniformly globally asymptotically stable.

Proposition 2: For ẋd(t) = 0, the system (22)-(23) with
the positive definite matricesKs, Kt, Kd andDd gets
time-invariant and represents a passive mapping from the
external forceF ext to the velocity errorėx.

A. Proof of Prop. 1

For the stability analysis of the system (22)-(23) it is
important to notice that the system is time-variant due
to the occurence ofxd(t) in the equations of motion. In
order to rewrite the system (22)-(23) forF ext = 0 in
the state variablesex, ėx,z, ż only, it is convenient to
make the following substitutions:J(ex, t) = J(f−1(x)),
Λ(ex, t) = Λ(x) and µ(ex, ėx, t) = µ(x, ẋ). Also
for the linear part of the system the substitutionsw =
(wT

1 ,w
T
2 )T = (zT , żT )T and

A =
[

0 I
−Ks −(Kt +KB−1)

]
are made. This leads to the system:

Λ(ex, t)ëx + (µ(ex, ėx, t) +Dd)ėx +Kdex =
J(ex, t)−Tw1 ,

ẇ = Aw .

Notice that this system has a cascaded structure because
the linear systemẇ = Aw does not depend on the state
variablesex andėx. For a nonlinear time-invariant system
in such a cascaded form to be asymptotically stable it
is necessary to show that all solutions of the coupled
system remain bounded and the uncoupled subsystems are
asymptotically stable [11]. Loria extended this result to
the time-variant case in [8]. In order to apply this result
to the system (22)-(23), the following theorem of [8] is
reproduced:

Theorem 1: Consider the system

ẏ1 = f1(y1, t) + h(y, t)y2 (24)

ẏ2 = f2(y2, t) (25)

with y = (yT1 ,y
T
2 )T . The functionsf1(y1, t), f2(y2, t)

andh(y, t) are continuous in their arguments, locally Lip-
schitz iny, uniformly in t, andf1(y1, t) is continuously
differentiable in both arguments. This system is uniformly
globally asymptotically stable if and only if the following
assumptions hold:
• There exists a nondecreasing functionH(·) such that

||h(y, t)|| ≤ H(||y||) . (26)

• The systems

ẏ1 = f1(y1, t)
ẏ2 = f2(y2, t)

are uniformly globally asymptotically stable
• The solutions of (24)-(25) are uniformly globally

bounded.

The proof of this theorem can be found in [8].
Notice that for the system (22)-(23) the existence of
a nondecreasing functionH(·) for which (26) holds is
fulfilled due to the assumption that the JacobianJ(q) is
nonsingular. Thus, there exists aδ ∈ <, 0 < δ <∞, such
that

||J(ex, t)−T || ≤ sup
t∈[0,∞[

√
λmax(J(ex, t)−1J(ex, t)−T )

< δ

with λmax(A(t)) as the maximum eigenvalue ofA(t) at
the timet.
Uniformly globally asymptotic stability of the two uncou-
pled subsystems is given by property 1 and the fact that
the linear systeṁw = Aw is even globally exponentially
stable for positive definite matricesKs andKt.
Hence it is sufficient to show that all solutions of the
coupled system are uniformly globally bounded. Before
this is shown, two well known matrix lemmas, which will
be used in the following, shall be given without proof ([6],
[4]).

Lemma 1: Suppose that a symmetric matrixA is parti-
tioned as

A =
[
A1,1 A1,2

AT
1,2 A2,2

]
(27)

whereA1,1 andA2,2 are square. Then the matrixA is
positive definite if and only ifA1,1 is positive definite and
A2,2 > A

T
1,2A

−1
1,1A1,2.

Lemma 2: Given an arbitrary positive definite matrix
Q, one can find a unique positive definite solutionP of
the Lyapunov equationATP +PA = −Q if and only if
the matrixA is Hurwitz.



Consider the positive definite function6

Vc =
1
2
ėTxΛ(ex, t)ėx +

1
2
eTxKdex +

1
2
wTPw (28)

with a positive definite matrixP . Under consideration
of the well known skew symmetry property 3 the time
derivative ofVc along the solutions of (22)-(23) is given
by

V̇c = −ėTxDdėx −
1
2
wTQw + ėTxJ(ex, t)−Tw1

whereQ = −(PA+ATP ) can be an arbitrary positive
definite matrix, becauseA is Hurwitz for positive definite
matricesKs andKt and the matrixP in Vc is positive
definite (see Lemma 2).
Obviously, V̇c can be written in matrix form

V̇c = −

 ėx
w1

w2

T N
 ėx
w1

w2


with

N =

 Dd

[
− 1

2J(ex, t)−T 0
][

− 1
2J
−1(ex, t)
0

]
Q


From Lemma 1 it follows that a necessary and sufficient
condition forN to be positive definite7 is

JT (ex, t)DdJ(ex, t) >
1
4
Q−1 ,

which can be fulfilled for every positive definite matrix
Dd, because by assumptionJ(ex, t) does not get singular
and the matrixQ is some positive definite matrix which
may be chosen arbitrarily. Hence, one can conclude that

V̇c(ėx, ex,w, t) ≤ 0 .

At this point it is worth mentioning thatVc is bounded
from above and below by some time-invariant, radially
unbounded and positive definite functionsW1(ėx, ex,w)
andW2(ėx, ex,w)

W1(ėx, ex,w) ≤ Vc(ėx, ex,w, t) ≤W2(ėx, ex,w)
W1(ėx, ex,w) = 1

2λ1||ėx||22 + 1
2e

T
xKdex + 1

2w
TPw

W2(ėx, ex,w) = 1
2λ2||ėx||22 + 1

2e
T
xKdex + 1

2w
TPw

where

0 < λ1 < inf
t∈[0,∞[

λmin(Λ(ex, t)) <

sup
t∈[0,∞[

λmax(Λ(ex, t)) < λ2 <∞

6Notice that the positive definiteness ofVc is ensured by the fact that the
eigenvalues of the matrixΛ(ex, t) are bounded from above and below
by some positive constants for allt ∈ < and allex ∈ <n
7Notice also that, in addition to Lemma 1, it is also possible to show
that all eigenvalues ofN are bounded from above and below by some
positive constants, becauseQ can be chosen arbitrarily and the matrix
J(ex, t) is nonsingular.

with λmin(A(t)) andλmax(A(t)) as the minumum and
maximum eigenvalue ofA(t) at the timet.
From this property and the fact thatV̇c ≤ 0, it can be
shown that the solutions of (22)-(23) are globally uni-
formly bounded. Proposition 1 follows then from Theorem
1.
Notice that the need to refer to Theorem 1 in this stability
proof results from the facts that on the one hand the
considered system is time-varying and on the other hand
the time derivative of the chosen functionVc is not
negative definite but only negative semidefinite. This fact,
together with the remark thatQ can be arbitrarily chosen,
are the most important differences to the proofs in [6] and
[7].

B. Proof of Prop. 2

ChoosingVc as the considered storage function yields
for V̇c in the case ofF ext 6= 0

V̇c = −

 ėx
w1

w2

T N
 ėx
w1

w2

+ ėTxF ext , (29)

The matrixN has already be shown to be positive definite.
From this one can conclude the passivity property from
Proposition 2 easily.

VI. EXPERIMENTAL RESULTS

In order to show the advantage of the proposed con-
troller compared to a simpler singular perturbation based
controller an experimental comparison with a single flexi-
ble joint is presented. The chosen hardware setup is shown

Fig. 1. Hardware setup

in figure 1 and consists of a joint as used in the DLR light



weight robots [2] with a mass of approx. 10 kg attached to
it as a load. These joints have torque sensors in addition
to the common motor position sensors. In order to get
a full state measurement, these signals are differentiated
numerically. The link positionq and its first derivative are
then computed from the motor positionθ and the joint
torqueτ via the known joint stiffnessk:

q = θ − τ/k (30)

q̇ = θ̇ − τ̇ /k (31)

Notice that the second and third order derivatives of
q, which are necessary for the implementation of the
impedance controller with the decoupling based torque
controller, can be computed from (1) if the external torque
τext can be measured.
In the experiment only the regulation case shall be con-
sidered, and the desired link position is given byqd.
Notice that for a single flexible joint with a constant
link side inertiam the only nonlinearity results from the
effects of gravity. Therefore, in this experiment the desired
stiffness and damping values for the desired behaviour of
the link position with respect to external forces can be
characterized with a chosen cutoff frequencywbd,q and a
damping factorξq. The desired behaviour, from which the
controller gainskd anddd can be computed, is then given
by the linear system:

mq̈ +m(2ξqwbd,q)q̇ +mw2
bd,q(q − qd) = τext

Also for the design of the torque controller gainsks andkt
the desired torque dynamics are characterized by a linear
behaviour of the form

z̈ + 2ξzwbd,z ż + w2
bd,zz = 0

with a cutoff frequencywbd,z and a damping factorξz.
The chosen values of these parameters are given in table
I. While the cutoff frequencywbd,z of the torque dynamics
has been chosen as high as possible, only a low damping
factor has been chosen. On the other hand, the desired
impedance is well damped. In the experiment, a step

TABLE I

CHOSEN PARAMETERS FOR THE EXPERIMENT

wbd,q 2π3.5 rad/s
ξq 0.7
wbd,z 2π18 rad/s
ξz 0.2

for the desired positionqd from 9 to 10 degrees was
commanded in the absence of external torques. The same
impedance controller was used in combination with the
two torque controllers from Section III. Figure 2 shows the
comparison of the ideal step response to the measured re-
sult with the decoupling based torque controller. In Fig. 3

0 0.1 0.2 0.3 0.4 0.5
8.5

9

9.5

10

10.5

11

11.5

A
ng

le
 q

 [°
]

time [s]

Fig. 2. Step response for the decoupling based controller: ideal (dashed)
and measured (solid) response
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Fig. 3. Step response for the singular perturbation based controller:
ideal (dashed) and measured (solid) response

the result with the singular perturbation based torque con-
troller is given. Notice that in this experiment bothwbd,q
andwbd,z were chosen quite high. Clearly, for impedance
controllers with a considerably lower bandwidth and better
damped torque control loop, the difference of the step
responses of the two controllers would be smaller. But
in this experiment it is shown that, for cases where the
singular perturbation based controller reaches its limit, the
proposed decoupling based controller behaves much better
due to the exact decoupling of the torque dynamics.
The same can be seen from the comparison of the torque
error. This comparison is given in Fig. 4. Here the inital
torque error due to the step of the desired positionq0 is
diminished considerably faster in case of the decoupling
based controller.
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Fig. 4. Torque errorz for both controllers: decoupling based controller
(above), singular perturbation based controller (below)

VII. C ONCLUSIONS

In this paper an impedance controller for flexible joint
robots has been presented which is based on an exact
decoupling of the torque dynamics. A stability analysis
was given for the case of an impedance behaviour in
which a desired stiffness and damping matrix can be
chosen while the manipulator’s inertial behaviour keeps
unchanged. Finally, an experimental comparison of the
proposed controller structure with a simpler singular per-
turbation based controller was given. The implementation
of the proposed controller on the 7DOF DLR-light-weight-
robot (see Fig. 5) is topic of our current research activity.

Fig. 5. 7DOF DLR-light-weight-robot (third generation)
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