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Abstract— This paper addresses the problem of motion
planning for free-flying robots. Full state actuation is con-
sidered to allow for large displacements of the spacecraft.
Motion planning is formulated as an optimization problem
and kinematic as well as dynamic constraints are considered.
The chosen optimization criteria are spacecraft actuation and
final time. The proposed method allows solutions which do
not require any spacecraft actuation for those end goals for
which the robot motion is sufficient.

I. INTRODUCTION

This paper deals with the general problem of motion
planning for free-flying robots. Much effort has already
been dedicated to such a problem, with the dynamic
interaction between the robot motion and the base (space-
craft). The non-integrability of the angular momentum
conservation law has given rise to interesting path plan-
ning problems and solutions ([1], [2], [3] to mention a
few). These problems however deal with a particular case
of free-flying robot dynamics, for which it is assumed
that no external actions are present. For this case, the
robot is often termed free-floating as opposed to free-
flying. It is however more generally true that a free-flying
robot will be subject to spacecraft control actions, for
large displacements, as well as to non-negligible orbital
disturbances. The free-floating approximation can only be
reasonably assumed in some specific situations, where the
robot is engaged in local motions and short operations.
Otherwise, the free-floating assumption is not valid. It is
perhaps then useful to consider the path planning problem
in a more general context.

The first point to note is that in space energy is indeed
precious, at least in the form of thruster fuel. The motion
planning strategy should then account for this and be in
this sense optimal. Since the free-flying operational con-
dition should not necessarily discard the free-floating one
- the two should be complementary - the planner should
allow solutions to be found for which no base control
action is necessary, neglecting orbital disturbances. Fur-
thermore, the final robot-spacecraft configuration should
be judiciously chosen, in accordance with the optimality
criterion and in relation to the given initial configuration.
Of all the possible final robot-spacecraft configurations
which result in the desired final state of the robot end-

effector in inertial space, the path planning solution should
converge to the dynamically optimal one.

The second major point considered here is the fact that
the execution of a desired path will necessarily involve
some actuator dynamics. A dynamic model of the robot
is used together with an optimization routine such that
an optimal path can be generated to account for the
control bounds. This can ensure that, in the absence of
disturbances and modelling simplifications, the desired
path is dynamically feasible as well as optimal.

We also point out that a dynamic description of the
robot allows the inclusion of models for external actions
which are present in Earth orbit. The ETS-VII experiments
have in fact shown that these actions (torques) can be
significant, at least in Low Earth Orbit [4]. We, however,
suggest that these are neglected for the path planning
phase and are dealt with by a path tracker which is
designed to compensate for them (see [5]).

The modelling of the robot as a fully actuated sys-
tem also allows to choose between different operational
strategies, free-flying (actuation on all spacecraft and robot
states), free-floating (actuation on robot states) or attitude
controlled (actuation on rotational states of spacecraft and
on all robot states). The latter would be necessary, for
example, if the attitude of the spacecraft had to be con-
tained within a certain operational window to avoid com-
munication loss with ground. These different strategies can
be chosen by simply commanding the desired spacecraft
behavior in the desired state variables definition.

The general problem of robot optimal motion planning
has been addressed in [6], [7], [8]. These authors address
real-time applicability as well as collision avoidance for
fixed base robots, with various optimization strategies,
including multiple shooting, semi-infinite parameter op-
timization and polytopic representation of collision con-
straints. The more specific case of free-flying robots is
treated in [9], [10], [11]. The first two, however, only treat
the free-floating case while the last addresses the collision
avoidance problem in detail.

We present here a first step into the direction of
developing a planner for the problem described above.
A spatial dynamical model is derived for a free-flying
robot with six-degree-of-freedom robot arm and with



rheonomically driven joints. An initial and final robot
end-effector state (position and orientation) are defined
in Cartesian space. The motion planning is then solved
as a single shooting problem, with inequality constraints
on the joint kinematics and on the actuator dynamics
and equality constraints on the final robot end-effector
state. Finally, the motion planning is chosen to be done
in joint space, rather than in task space, to avoid the
problem of dynamic singularities. This does not allow
to formulate a Boundary Value Problem, since the final
robot configuration is unknown and should derive from
the optimal solution.

II. MODELLING AND EQUATIONS OF MOTION

Consider the free-flying robot shown in figure 1, com-
posed of rigid bodies connected by revolute joints. Every
element of the system is characterised by a local frame
of reference {O i, e i}, placed at the joint connecting
it with the previous element along the kinematic chain.
If i = 0, the frame of reference is relative to the base
body (satellite), placed in some arbitrary position within
it, while if i = e, the frame of reference is relative to the
end-effector. The inertial frame is expressed as {O I , e I}.

The quantity r i, shown in figure 1, is the position vector
of body i. The position of the i th revolute joint, whose
rotation vector is ui, is described by the variable θ i, which
is measured relative to an arbitrary initial reference robot
configuration. Vectors c i and d i represent the distance
from the joint to the centre of mass and to the following
joint of body i.

The equations of motion of the system with rheonom-
ically driven joints, first described in [5] for the planar
case, will now be briefly described for the spatial case.
These can first be written in descriptor form using the
Newtonian-Eulerian formulation, as follows:
Kinematics:

ṙ i = v i (1)

Ȧi := ω̃ i A i (2)

Dynamics:

d

dt

(

m i v i
)

= f i + f i
c , (3)

d

dt

(

I i . ω i
)

= t i + t i
c (4)

Constraints:
r i+1 = r i + d i, (5)

A i+1 = B i+1 A i (6)

where ri is the absolute position, Ai is the direction cosine
matrix, v i the translational velocity and ω i the angular
velocity of body i relative to the inertial frame (expressed
in inertial coordinates in Eq. (2)). B i is the relative
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Fig. 1. Reference frames and geometrical quantities of the free-flying
robot

rotation matrix between frames i and i − 1, function of
θ i. Furthermore, m i is the mass, I i the inertia tensor
referred to the centre of mass, f i and t i are the sums
of the external forces and torques and f i

c and t i
c are the

sums of the constraint forces and torques (arising from the
revolute joints) on the i th body.

After choosing a suitable frame of reference in which
to express the vector quantities and a suitable parameteri-
sation of the angular position, as for example Euler angles
φ i, the equations can be written in matrix form. Choosing
the inertial frame {O I , e I}, the kinematic and dynamic
equations become:

ẋ I = X(x I) x II (7)

J ẋ II = Q + Λ = Q + τ + τ c (8)

where

x I =

[

[r i]
[φ i]

]

x II =

[

[v i]
[ω i]

]

(9)

are vector arrays related by the matrix X, which in turn
can be determined by the standard formulation of the Euler
angles parameterisation (see for example [12], p.83) and

J =

[

m 0

0 I

]

Q =

[

0

− [ω̃i Ii ω i]

]

τ =

[

[f i]
[t i]

]

.

(10)

Furthermore, m = diag( m i E 3 ), where E 3 is a three
dimensional identity matrix, and I = diag( I i ).

The differential algebraic equations (7) - (8) with (5)
- (6) can then be transformed into a set of ordinary
differential equations. The Cartesian position variables
of the system defined in Eq. (9) are replaced by the
independent position state space variables which can be
chosen to be

y I = [ r 0, φ 0, θ ] T y II = [ v 0, ω 0, θ̇ ] T (11)



where θ = [θ i]. The relationship between the variables
x II and y II can be expressed as

x II = ψ y II + ψ̂ z II (12)

where ψ is termed the modal matrix. Furthermore, z II in-
cludes all the locked and kinematically (or rheonomically)
driven velocity state variables of the system (for further
details refer to [12]).

Eq. (12) can then be differentiated in time and substi-
tuted into Eq. (8) to obtain:

ẏ I = X̄(y I) y II (13)

J̄ ẏ II = Q̄ + τ̄ . (14)

Note that the resultant equations are now free of the
unknown constraint force vector τ c, which results from
the application of d’Alembert’s principle.

A. Rheonomic joints

Noting then that Eq. (12), with rheonomically driven
joints, is written as:

x II = ψ̄ ȳ II + ˆ̄ψ z̄ II + ˆ̄ψ l z̄ II l, (15)

where
ȳ II = [ v0, ω0 ] T , z̄ II = θ̇, (16)

and z̄ II l now contains only the locked velocity state
variables, it follows, using the same procedure above, that
the equations of motion become:

˙̄yI = X̄ 0(ȳ I) ȳ II (17)

J̄ 0 ˙̄yII = Q̄ 0 + τ̄ 0 + Υ. (18)

In Eqs. (18) - (18) the superscript 0 relates to the case
with rheonomic joints. Also, in the equation

Υ = ψT J ˆ̄ψ θ̈
0
, (19)

where now θ̈
0

is a prescribed function of time.
Note that the order of the equations of motion (18) is

now only six, equal to the degrees of freedom of the base
body.

B. Modelling summary

From the above derivation it follows that:

• the fully-actuated system is represented by Eqs. (14)
- (14) - note that actuation on the spacecraft and robot
is expressed by vector τ̄ ;

• the fully-actuated system with rheonomically driven
joints is represented by Eqs. (18) - (18) - note that
actuation on the robot does not appear, as its motion
is described by the prescribed time function θ̈

0
.

Actuation on the spacecraft is expressed by vector
τ̄ 0;

• the free-floating system is described by Eqs. (14) -
(14) or by Eqs. (18) - (18) for τ̄ 0 = 0.

III. TRAJECTORY PLANNING

The path planning problem is generally defined here
as the point-to-point problem, i.e. that of determining
the time history of the robot joints and spacecraft state
(position and orientation) in order to move the end-effector
of the robot from a given initial to a given final state
in inertial space. As we are considering the trajectory
planning problem, the equivalent time history for the
actuation variables will also be determined.

Using the notation in figure 1, the initial and final end-
effector position and orientation are defined as:

r e (t 0) = r e
0 φ e (t 0) = φ e

0 (20)

r e (t f ) = r e
des φ e (t f ) = φ e

des , (21)

where t 0 and t f are the initial and final time of the
maneuver and φ e is a set of Euler angles to represent
the orientation of the frame of reference {O e, e e}

Furthermore, the path planning solution has to satisfy
kinematic and dynamic constraints. The former can be
expressed as

θ i
min ≤ θ i ≤ θ i

max , 1 ≤ i ≤ n , (22)

where n is the number of joints of the robot (taken to be
six).

The dynamic constraints are simply

τ̄ 0 i
min ≤ τ̄ 0 i ≤ τ̄ 0 i

max , 1 ≤ i ≤ 6 , (23)

τ̄ i
min ≤ τ̄ i ≤ τ̄ i

max , 6 < i ≤ n + 6 , (24)

where τ̄ i is generally the actuation force for the state
variable i and superscript 0 relates to the base body. Note
that we are considering the case of full actuation, meaning
that the states of the robot are taken to be the six degrees
of freedom of the spacecraft ( 1 ≤ i ≤ 6 ) and the n

degrees of freedom of the robot ( 6 < i ≤ 6 + n ).
As we anticipated in the introduction, the path planning

problem is taken as an optimization problem. The 6 +
n states of the robot-spacecraft system are parameterised
in time while Eqs. (21) - (21) and (22) - (24) will be
taken as equality and inequality constraints respectively.
Regarding the cost function, we have initially chosen to
optimize for the base actuation in order to minimise for
the thruster fuel consumption. We have chosen to optimize
for both translational and rotational spacecraft actuation
as an example. The cost function Γ can then be expressed
mathematically as

Γ =

6
∑

i=1

∫ t f

0

‖ τ̄ 0 i(t) ‖ dt , (25)

where Γ can be considered as the impulse, if the torques
are assumed to be computed as the product of a force by
a unit moment arm. Then the impulse can be related to
an energy content because it is equal to the product of the
necessary fuel mass times its specific impulse (which is a
given constant).



A. Constraint equations

The left hand sides of the equality constraints (21) - (21)
are simply expressed as

r e = r 0 +

n
∑

i=0

d i (26)

A(φ e) = A(φ 0) A(θ) (27)

where A is a rotation matrix, function of a set of rotation
parameters φ or of joint angles θ.

For inequality constraints (22) - (24), the inverse dy-
namics problem has to be solved. Given a time history of
the 6 + n state variables y I = [ r 0 φ 0 θ ] T and their
first and second derivatives ẏ I = [ v 0 ω 0 θ̇ ] T and
ÿ I = [ v̇ 0 ω̇ 0 θ̇ ] T , then the vector of actuator actions
τ̄ is given by Eq. (14).

B. Use of the free-floating solution

The equations defined in the previous section are con-
ceptually complete for the solution of the path planning
problem we are wanting to solve. However, in order
to improve the quality of the optimal solutions and the
efficiency of the optimizing routine a further step is in-
troduced. We first want to distinguish between maneuvers
in what we define the local workspace - the workspace
of the robot with no spacecraft actuation - and those in
the global workspace - ideally all reachable free space.
The distinction is useful here because the first kind of
maneuver does not require any spacecraft actuation and
the optimal solution in the sense we have defined should
be exactly this one. This can be called the free-floating

solution. The motion of the base for these solutions is
complex or in any case would require a polynomial of high
degree in order for it to be suitably approximated. A high
degree polynomial means a high number of optimization
parameters and a longer running time for the optimization
algorithm.

An alternative approach is to solve for the free-floating
motion for a given time evolution of the joints and add
this to a parametric function of the spacecraft states, such
that the latter can be simply set to zero if free-floating
solutions are sought. Although one might argue that the
overall running time is comparable to that of the previous
approach, we have chosen to go this way. A free-floating
solution can in this way be described exactly.

Therefore, equations of motion (18) - (18) for the free-
flying robot with rheonomically driven joints are used.
The integration of Eq. (18) supplies the solution ȳ

ff
II =

[v ff ω ff ] T (t), the free-floating solution. Note that this
solution depends on the joint motion variables, which are
parameterised in time. The free-floating solution can then
be added to a time parameterised term to finally satisfy
the equality constraints (21) - (21) (see section IV). The
inequality constraints (24) - (24) can then be satisfied by
use of Eq. (14).

IV. TRAJECTORY PLANNING SOLVER

The optimization problem is then:

min
p

Γ (28)

where p is the set of parameters appearing in the states
parametric functions defined below. The cost function is
given by Eq. (25) and Eqs. (21) - (21) and (22) - (24) are
the equality and inequality constraints respectively.

Furthermore, the parameterisation of the state variables
is as follows:

r 0 (t) = r ff (t) + f 5
t (t;p) (29)

v 0 (t) = v ff (t) + f 4
t (t;p) (30)

v̇ 0 (t) = v̇ ff (t) + f 3
t (t;p) (31)

A(φ 0) (t) = A(φ 0) (0)

∫ t

0

ω̃ 0 A(φ 0) dt̄ (32)

ω 0 (t) = ω ff (t) + f 4
r (t;p) (33)

ω̇ 0 (t) = ω̇ ff (t) + f 3
r (t;p) (34)

θ i (t) = f 5
j (t;p) 1 ≤ i ≤ n (35)

θ̇ i (t) = f 4
j (t;p) 1 ≤ i ≤ n (36)

θ̈ i (t) = f 3
j (t;p) 1 ≤ i ≤ n (37)

where generally function f n is a polynomial function of
degree n and given a polynomial function of degree i,
e.g. f 5

j , then the following polynomial functions of degree
i−1, i−2 are the successive derivatives of the first. These
functions have been parameterised with a polynomial of
degree 5 in order to set the further desired conditions that:

• velocity and acceleration of parameterised variables
are at initial and final time zero;

• the initial position is given by the definition of the
initial conditions of the robot-spacecraft configura-
tion.

It follows that parameter vector p is composed of the
following quantities:

p = [ θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 r 0 1
b r 0 2

b

r 0 3
b φ 0 1

b φ 0 2
b φ 0 3

b ] T (t f ), (38)

where r 0 i
b are the components of the second term on the

right hand side of Eq. (30) and φ 0 i
b are the equivalent

for the rotational motion. The latter are such that the
integral of the angular velocity ω 0 (Eq. (33)) satisfies
the orientation constraint on the end-effector. Furthermore,
each of the first terms on the right hand side of Eqs. (30)
- (35) is taken from the solution (integration) of Eq. (18),
which is in turn obtained with the aid of Eqs. (36) - (37)
. Eqs. (30) - (37) are then used with Eq. (14) to compute
vector τ̄ .

Note that the chosen polynomial parameterisation for
the state variables allows only one free parameter for
each position variable. This is the minimum number of



parameters possible and a broader range of functions
could be used for the optimization problem by choosing
higher degree polynomials or B-splines, for possibly better
optimal solutions, but at the clear expense of computation
time. As a first approach the simplest function represen-
tation was chosen here.

Furthermore, due to the boundedness of function θ i(t)
between θ i (t 0) and θ i (t f ), the kinematic inequality
constraints only need to be checked at t = t f .

The optimization method used for the resolution of
the above problem is Sequential Quadratic Programming
(SQP).

V. RESULTS
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y

Fig. 2. Model example of free-flying robot. Initial configuration is
shown.

Two paths are considered for the description of the
proposed method: a path in the local workspace and a path
in the global workspace. Consider the free-flying robot
shown in figure 2. The inertial parameters of the robot
where chosen to be those of the ETS-VII satellite. The
initial state of the end-effector corresponding to the shown
configuration of the robot is:

r e
0 = [ 0.10 − 0.83 4.49 ] T φ e

0 = [ 0.0 0.0 0.0 ] T .

For the first path, the final desired state of the end-effector
was chosen to be

r e
des = [ 0.40 0.0 3.8 ] T φ e

des = [ −0.5 0.5 0.0 ] T .

The initial guess was taken to be
p 0 = [ 0.1 0.1 0.1 0.1 0.1 0.1 0.0001 ... 0.0001 ] T .

The solution was hence found to be
p = [ 0.85 0.62 − 0.20 0.40 − 0.94 0.12 0.0 ... 0.0 ] T .

The cost function for this example was 8 e-3 kg m/s,
indicating that no base actuation is present (this is also
clear from the zero values of the last six parameters). The
path is shown in Fig. 3. The computation time was about
130 seconds on a standard Sgi machine. For the second
maneuver, the final desired state of the end-effector was
chosen to be

r e
des = [ 6.0 − 0.83 7.00 ] T φ e

des = [ 0.0 0.0 0.0 ] T .

The initial guess was taken to be the same as for the
previous case. The solution was hence found to be

x
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y

Fig. 3. Maneuver in local workspace - free-floating solution. Initial and
final configurations are shown.
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Fig. 4. Maneuver in global workspace. Initial and final configurations
are shown.

p = [ −1.35 0.3 − 0.94 − 0.88 0.45 1.37 1.97 0.42
3.94 0.03 1.09 − 0.07 ] T .

The cost function for this case was 4460 kg m/s, of
which 1815 kg m/s from the translational forces. The
computation time was about 165 seconds. The path is
shown in Fig. 4. Kinematic constraints (22) were applied
as

θ i
min = −1.5, θ i

max = +1.5 , 1 ≤ i ≤ n .

The spacecraft actuator’s effort is shown in Fig. 5, for the
spacecraft actuation torque τ 0 4. Note that the final time
t f is 50.0 seconds. The chosen parameterisation however
does not allow to lower the control bounds below the
found solution since the parameterisation function is only
dependent on the final robot-spacecraft position. However,
to avoid saturation of the actuators within the context of
trajectory planning, a variable execution time is sufficient.
The last maneuver is then repeated with bounds on the
base body actuation forces, taken to be

τ 0 i
min = −20.0, τ 0 i

max = +20.0 , 1 ≤ i ≤ 6 .

The results, also given in Fig. 5, are clearly showing the
optimal use of the actuators to minimise the final time
for the given dynamical limits of the robotic system. The
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final time t f is now 75.37 seconds. Furthermore, the cost
function has been defined as Γ = t f , as opposed to the
conflicting function defined in Eq. (25).

A. Maneuvers for attitude controlled operational strategy

The second maneuver, shown in Fig. 4, is repeated for
the attitude controlled case. This is achieved by simply
fixing the desired rotational states of the base to their
initial values and the angular velocity and acceleration to
zero. The resulting maneuver is shown in Fig. 6. Note that
the solution in this case is
p = [ 1.00 1.50 − 1.42 − 0.08 − 1.00 0.00 5.46
− 1.42 3.30 0.00 0.00 0.00 ] T

and the cost function is 5033 kg m/s, of which 2108 kg
m/s from the translational forces. Comparing this result
with that of the maneuver shown in Fig. 4, we find that
the cost is in this case higher, due to the constraint imposed
on the base motion.

B. Orbital disturbances

These could be included in the model to aid the optimal
solution. However their effect leads to a monotonic accel-
eration of the system. Although this could still be of aid for
part of the maneuver, we believe that they should be dealt
with by the spacecraft control only, gaining in planning
simplicity, and because the gain in including them in the
dynamic model would be minimal. Only for very slow
motions would their effect be of real relevance.

VI. CONCLUSION

An optimization method has been applied to the motion
planning problem of free-flying robots. Solutions have
been found for local and global motions, where for the
latter the unnecessary spacecraft actuation has been shown
to be efficiently avoided. Both kinematic and dynamic
constraints have been satisfied allowing for minimum
spacecraft actuation or minimum time of execution. The
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Fig. 6. Maneuver in global workspace - attitude controlled spacecraft
for zero angular motion. Initial and final configurations are shown.

times of computation have also been shown to be promis-
ingly short. Further work will address collision avoidance
and the development of an initial guess criterion for
optimization robustness.
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