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Abstract— The dynamics and control of a cable-suspended,
two-arm robotic system are developed for an entertainment
application. One manipulator arm is controlled to fulfill a user
defined task. The second arm is then controlled to compensate
for the disturbances on the cable-suspended platform arising
from the motion of the first.

Model-based feedforward control, stemming from the
momentum conservation equations of a free-floating robot, is
developed for the motion compensation problem. Furthermore,
due to model uncertainty, sensor-based feedback control is
introduced, to account for undesired oscillatory motions of the
system. The latter control problem reduces to the dissipation
of the oscillatory energy of the system, by means of adequate
robot control. Both control methods are implemented and
tested on an experimental set-up.

I. INTRODUCTION

Cable-suspended robots have a wide application for ma-

nipulation in large workspaces and where actuation needs

to be performed on targets difficult to reach from ground.

Examples include inspection and repair in shipyards or trans-

port of externally suspended loads on helicopters [1], [2].

The problems of path tracking and of oscillation damping

are then of interest. Control may be performed with direct

actuation of the suspension cables [1], [2], or as proposed

here, with a momentum compensating element, such as a

suitably actuated mass. A particular case is that of using a

robot manipulator. This adds interesting aspects, related to

entertainment robotics and to multiple-arm free-floating robot

control.

This work develops a control method for a cable-

suspended, two-arm robotic system, thought for an entertain-

ment application. Two six-degree-of-freedom manipulators

are mounted on the opposite faces of a suspended platform,

parallel to the ground (see Fig. 1). The goal of the control

is to allow one robot, the master, to perform a user-defined

six-degree-of-freedom tracking task, such as dusting a car

positioned on an elevated platform beneath it. The second

robot, the slave, then compensates for any disturbances on

the platform which arise from the motion of the master.

The desired end result is that the platform remains stationary

during robot operation.

Fig. 1. Experimental set-up of two-arm cable-suspended system: the master
is provided with a long duster, the slave with a heavy dumbbell

This control problem has two main components: the first

relates to the ideal motion compensation of the two robots,

which can be solved with a model-based approach and free-

floating robot dynamics; the second relates to the suppression

of the system oscillations, which here may arise from model

uncertainty or implementation errors, solved with feedback

control.

The developed control method is applied to the experimen-

tal set-up shown in Fig. 1. The two 6 d.o.f. robot arms have a

distinctive upper/lower elbow arm structure, giving rise to a

compensation problem also recognized in [3] to be difficult.

The added complexity arising from the oscillatory motion

element, is treated with a control law based on passivity.

The paper is divided into four subsections: the first de-

scribes some related bibliography, the second the theoretical

aspects of the control methods, the third the implementation

aspects with a description of the experimental set-up and the



fourth the experimental results. The paper is closed with a

conclusions section.

II. BIBLIOGRAPHY

Some works of relevance to the compensation control

problem include those on free-flying robot dynamics, as in [4]

and [5]. In the first, a spatial dynamic model for a multiple-

arm free-flying robot with reaction wheels is derived. Motion

control of the 6 d.o.f. arms is then addressed, operating one to

trace a given path and a second to minimize the operational

control torque of the reaction wheels, to maintain the attitude

of the base body fixed. The formulation of the solution

is based on the inverse kinematics on acceleration level.

In [5], the full planar compensation problem is considered

for a robot with two three-joint arms also extending in the

plane. The momentum conservation equations are used and

emphasis is given to avoiding singularities of the compen-

sating robot. However, in all cases the joint kinematic and

dynamic constraints, which strongly limit the workspace of

the compensating robot, are not addressed.

In [6] the inverse kinematics problem for a single-arm free-

flying system is analyzed in detail, based on a momentum

conservation formulation, although again only attitude motion

of the spacecraft is of interest. On the vibration suppression

by means of a robot, in [3] the problem of end-effector path

tracking and of vibration suppression for macro-mini manipu-

lators is addressed. In both cases, solutions are provided with

use of the robot reaction null space, which is not applicable

here since the tasks of the master robot are generally six-

dimensional.

III. METHOD

The equations of motion of a two-arm free-floating robot

are first described. For the purpose of the motion compensa-

tion control problem, these are then related to the momen-

tum conservation equations for the equivalent system. The

equations of the cable suspended system are then formally

described. Finally, based on these derivations, the theory for

both aforementioned control problems is presented.

A. Equations of motion

1) Dynamic equations of the free-floating system: Con-

sider the system depicted in Fig. 2. The inertial frame of

reference is denoted by {OI , eI}. Its relation to the platform

body frame of reference {O0, e0} is described by the position

vector r0 and the orientation matrix A0, parameterized for

example by Euler angles φ 0 = [φ0
1, φ

0
2, φ

0
3], and such that

e 0 = A 0 e I . Vector quantities are here expressed in the

inertial coordinate frame, such that for example r0 = r0 e I .

The configuration of the ith robot is described by the

column matrix θi, the elements of which describe the jth

revolute joint position θ j
i , measured relative to an arbitrary

initial reference configuration.
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Fig. 2. Configuration and reference frames of the cable-suspended robot

Considering now the free-floating robot dynamics, i.e.

omitting gravity and the suspension cables, let the platform

state variables be collected as follows:

yI = [ r0, φ0] T yII = [ v0, ω0] T , (1)

where yI and yII are the position and velocity state vari-

ables respectively. The formal equation structure can then be

written as follows [4]:
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where M is the configuration dependent inertia matrix, C the

configuration dependent vector of centrifugal and Coriolis

terms and τ the vector of external actions acting on the

degrees of freedom yI ,θ1,θ2 of the whole system. Further-

more, the subscripts p, r1 and r2 relate to the platform, the

master robot and the slave robot respectively, such that, for

example, Mp ∈ R(3×3) is the inertia matrix which relates to

the platform.

It is convenient here to bring out the dynamic coupling

between the robots and the platform. As such, from Eq. (2)

it follows that:

Mp ẏII + Cp = −Mpr1
θ̈1 − Mpr2

θ̈2 . (3)

2) Linear and angular momentum equations: Consider

now again the case where gravity and the cables are absent.

This is the free-floating case seen above, for which the laws



of conservation of linear and angular momentum yield the

following relationship between the platform and the robot

velocities [4]:

Mp

[

v0

ω0

]

= −Mpr1
θ̇1 − Mpr2

θ̇2 , (4)

assuming zero initial momentum. This equation, which is first

integral of Eq. (3), can be rewritten as:
[

v0

ω0

]

= J1 θ̇1 + J2 θ̇2 , (5)

where Ji is a Jacobian matrix of the ith manipulator, relating

base body and joint motion.

3) Dynamic equations of the cable-suspended system:

Finally, introducing now the cables and gravity, the final

equations of the system formally become:

Mp ẏII + Cp = −Mpr1
θ̈1 −Mpr2

θ̈2 + G + Fc , (6)

where the time dependent matrix G represents the gravity

force vector and Fc the vector of cable forces (always

positive) respectively.

For the resolution of these equations, useful for simulation

purposes, the cables can be modeled as elastic springs. How-

ever, the dynamics of the cables elasticity is not of interest

here, as it is assumed that their elongation is negligible.

Suitable choice of the stiffness parameters in the spring

model will give the desired physical behavior, although the

resulting numerical stiffness of the equations leads to long

computational times.

Note that the above formulations are also useful for the fact

that the robots are controlled through their built-in industrial

controllers. As such, the control commands are designed at

a joint velocity level, rather than at a torque level. This gives

rise to delays in the controller performance, as described in

the results section.

B. Feedforward Compensation Control

For the compensation control problem, the system may be

idealized as free-floating. The assumption is in fact made

that it is initially at rest. In case of perfect knowledge of the

system parameters, a reactionless motion of the two robots

can be determined with a model-based approach. In fact, if

the slave robot can perfectly compensate for the actions of

the master on the platform, then the latter will ideally always

remain stationary. Any diversion from this is therefore seen

as an error, to be compensated with the feedback control

action described in section III-C.

1) Free-floating system: Following is the description of

the compensation motion control for the general uncon-

strained case. Consider the conservation of the linear and

angular momentum of a free-floating system, expressed in

Eq. (4). The solution to the six-dimensional motion compen-

sation problem, where θ̇1 = θ̇1(t) is an assigned function in

time, is given by the condition:
[

v0

ω0

]

= 0 (7)

and Eq. (4) simply yields:

θ̇2sol = − Mpr2

−1 Mpr1
θ̇1 . (8)

Such a solution always exists as long as matrix Mpr2
is non

singular. As we will see, however, the physical constraints on

the system (joint actuation limits) are such that only a very

limited set of these solutions are practically feasible.

2) Constrained free-floating system: For the constrained

cable-suspended system, the formulation is modified as fol-

lows. Since, by applying suitable operational constraints on

the robots, the platform is constrained in the vertical transla-

tional and in the horizontal in-plane rotational motions, either

by the cables, or by the weight of the entire system, then only

the remaining degrees of freedom need to be compensated

for. In fact, for the vertical translational motion, the robot

inertial forces on the platform would have to overcome the

weight of the system (see Eq. (6)). Likewise, for the in-

plane rotational motions, the robot inertial moments about

a given pivoting side of the platform would have to exceed

that generated by the weight of the system. Due to the large

mass of the experimental system used, these limitations turn

out to be very unrestrictive and were therefore ignored.

To solve the constrained compensation control problem,

Eq. (4) can then for example be written as follows:

[3 × 3]M
′







v0
x

v0
y

ω0
z






= −[3 × 6]Mpr1

′

θ̇1 − [3 × 6]Mpr2

′

θ̇2 ,

(9)

where the primed matrices have been obtained by the rela-

tive terms in their fully six-dimensional counterparts (their

dimensions are defined by the lower left-subscript). In this

example, all joints of the slave robot are used (more will be

said about this point in subsection III-B.4). Therefore, setting

the left-hand side to zero, as required, gives rise to a least

squares problem.

3) Full quadratic programming formulation: In practice,

kinematic and dynamic supplementary constraints on the

slave robot motion enter into the problem. These are inequal-

ity constraints, which relate to the joint positions, velocities

and accelerations. A quadratic programming problem can

then be formulated, where the kinetic energy of the slave

robot Γ is to be minimized:

min
θ̇2

Γ(θ̇2) =
1

2
θ̇2

T Mr2
θ̇2 , (10)

where Mr2
is the slave robot inertia matrix, and with equality

and inequality constraints as follows:

Mpr1

′

θ̇1 + Mpr2

′

θ̇2 = 0 (11)



θ i
2 min ≤ θ i

2 ≤ θ i
2 max (12)

θ̇ i
2 min ≤ θ̇ i

2 ≤ θ̇ i
2 max (13)

θ̈ i
2 min ≤ θ̈ i

2 ≤ θ̈ i
2 max . (14)

The joint positions and accelerations can be linearly related

to the velocities by simple numerical integration or differen-

tiation, i.e.

θ i
2(t) = θ i

2(t − ∆t) + θ̇ i
2(t) ∆t (15)

θ̈ i
2(t) = (θ̇ i

2(t) − θ̇ i
2(t − ∆t))/∆t , (16)

where ∆t is equal to the sampling rate of 12 ms. As such,

for the given optimization problem, the optimal solution θ̇
∗

2

is unique, since the matrix Mr2
is positive definite [8]. This

solution locally minimizes the weighted norm of the joint

velocities, implying that no internal motions result.

4) Compensation limit and kinematic decoupling of the

slave robot: It turns out that the physical bounds on the

slave robot joints make the range of master motions which

can be compensated rather limited. This is due to the robot

kinematic configuration, which gives rise to a strong coupling

in the joint motions for the actions exerted at the base.

Practically, compensating forces or torques alone is simple,

but compensating both simultaneously is not. Nenchev also

points this out in [3].

This fact can be simply viewed as follows. Consider first

the case in which only the first three joints of the slave

robot are used, for which now Mpr2

′

∈ R(3×3) in Eq. (11),

which for our purpose would simply need to be inverted.

Furthermore, if we imagine to have a sliding disk in place

of the slave robot, actuated in the two translational degrees

of freedom of interest, and which is also allowed to rotate

about its axis of symmetry, then the same matrix would be

diagonal and the compensation limit would be decoupled for

each direction. This could actually be an interesting hardware

implementation for different industrial applications of this

robotic system. Instead, for the robot kinematics shown in

Fig. 3, where the first joint is revolute, matrix Mpr2

′

includes

off-diagonal elements, which give rise to the strong joint

coupling.

A judicious initial slave robot configuration is a first

measure to improve the solution of the inverse kinematics

problem. This can be chosen by the condition:

min
θ2

κ =
σ1

σ2
, (17)

where κ is the condition number of matrix Mpr2

′

, while σ1

and σ2 its largest and smallest singular values respectively.

This favors a well-conditioned inverse, for the resolution of

Eq. (11).

A further development involves the decoupling of the slave

robot kinematics. This in turn involves choosing a particular

configuration of the wrist joints. In fact, by selecting joint 5

Fig. 3. Kinematics of KUKA robot

such that joint 6 is always aligned with the vertical, i.e. (see

also Fig. 3)

θ̇5
2 = −θ̇2

2 − θ̇3
2 θ̇4

2 = 0 , (18)

ensures that the latter’s action only applies to the rotational

degree of freedom of the platform. This way, joints 1,2 and 3

can be applied to compensate for the translation disturbances

on the system and the decoupled joint 6 can then deal with

the remaining rotational element.

Mathematically the solution is as follows. Let Eq. (11) now

become

[3 × 6]Mpr1

′

θ̇1 + [3 × 4]Mpr2

′′

[1 × 4]θ̇2

′

= 0 , (19)

where the double-primed matrix Mpr2

′′

has dimensions

(3 × 4) and θ̇
′

2 is a (4 × 1) vector, containing the first

three and the last robot joint velocities (the effect of joint 5

is here neglected for simplicity). The conditions in Eq. (18)

guarantee that the first two rows of Eq. (19) can be solved

independently of θ̇6
2 , giving a solution for joint velocities

θ̇1
2, θ̇

2
2 and θ̇3

2 . Then, the last row of Eq. (19), which includes

all terms of θ̇
′

2, can be solved in θ̇6
2 for the previously found

solution of the first three joints. As will be shown in the

results section, this configuration was found to be successful

for a wider range of motions of the master robot.

Equations (10)-(14) (or (19) in place of (11)) can be solved

for subsequent time steps to obtain a solution for a given

master robot motion. The solution can be used to partly

validate the feasibility of the compensation, with respect to

the motion constraints. The global optimization of kinematic

redundancy was however not addressed here.

C. Feedback Oscillation-Suppression Control

The solution in the previous section is only suitable for

feedforward control. A feedback control is necessary to

account for modeling and implementation errors during the

execution of the task which, due to the effect of gravity,

give rise to an undesired oscillatory motion of the platform.

The feedback error then consists of the platform motion, the

measurements of which are provided by a camera system



placed above it.

Here, the aim of the controller is to add any necessary

compensation, via extra slave robot actuation, to account for

the platform motion disturbance. We first consider the simpler

case where the slave robot only has to dissipate the energy

of the system initially set in oscillation. Then, the extension

to the dual task of compensating for the master robot as well

as the oscillation suppression is addressed.

Let us then analyze the first problem in the framework of

passive systems and consider the specific case of passivity-

based position control, as described in [7]. The Hamiltonian

of the platform is

Hp =
1

2
ẏI

T Mp ẏI + U(yI) , (20)

where yI and ẏI represent the platform position and velocity

states respectively (cf. Eq. (1)), Mp its inertia matrix (cf.

Eq. (6)) and U(yI) its potential energy (this includes the

gravity force term G and the term of cable forces Fc).

It is straightforward to state that the platform is in itself

a passive system. In fact, Eq. (20) shows that its total

energy has a bounded minimum in the stationary position

of interest, since the potential energy is referenced to an

arbitrary constant. This position, without loss of generality,

may be given by r 0 = 0,φ 0 = 0, for which the gravity

force term G is zero. Furthermore, if the condition holds

that v0 = 0,ω0 = 0, then the system is in equilibrium since

no actions result.

The Hamiltonian Hp also satisfies the following equation:

Ḣp = ẏI
T v , (21)

where v represents the external nonconservative forces and

torques. This implies that the platform is passive from the

input v to the output yII . Damping is then introduced to

asymptotically stabilize the system:

v = −Kd ẏI , (22)

where Kd > 0 is a diagonal matrix. Equation (21) then

becomes

Ḣp = −ẏI
T Kd ẏI . (23)

From Eq. (6), it follows that the control forces on the

platform arising from the robot are

v = −Mpr2
θ̈2 , (24)

(cf. Eq. (6)).

Equating Eq. (22) and (24) gives the sought relationship

ẏI = Kd
−1 Mpr2

θ̈2 . (25)

Equation (23) then becomes

Ḣp = −θ̈2
T Mpr2

T Kd
−1 Mpr2

θ̈2 . (26)

If the matrix product Mpr2

T Kd
−1 Mpr2

is always positive-

definite, then expression (26) is negative semi-definite, and by

use of La Salle’s invariance theorem, the asymptotic stability

of the equilibrium can be proven [7].

To this purpose, it is a known result that a real symmetric

matrix, B, is positive definite if there exists a real nonsingular

matrix, M, such that

B = MT AM , (27)

as long as A is also positive definite [9]. This argument can

be extended to the matrix J2 = Mp
−1Mpr2

, since the matrix

Mp is positive definite. It is then sufficient that the Jacobian

matrix J2 is never singular to satisfy the necessary condition

above.

By judicious choice of the gain matrix Kd, for a given

maximum platform oscillation, the slave robot motions are

small enough to ensure that a singularity is never met. This

is of course at the expense of the platform motion damping.

From the above reasoning it follows that if Eq. (25) holds,

then the platform motion is asymptotically stable. The control

input is then chosen as:

θ̇2 =

∫ t

0

Mpr2

−1 Kd

[

v0
mes

ω0
mes

]

dt , (28)

where subscript ’mes’ refers to measured values.

For the combined control problem, the local solution

is chosen as the sum of that from Eq. (11) and that of

Eq. (28) (the latter may also be modified by an equivalent

expression of Mpr2
for the kinematically decoupled case seen

in subsection III-B.4).

IV. EXPERIMENTAL SET-UP

Details of the experimental set-up are given in Fig. 4.

Two global cameras placed on the ceiling above the system

deliver the position and velocity of the platform via pattern

Fig. 4. Details of the experimental set-up



recognition with a sampling rate of 80 ms. The two KUKA

robot controllers (KRC) are configured for a synchronization

period of 12 ms, using the KUKA Ethernet-based RoboTeam

Technology (shown in Fig. 4 as interface ’A’). The data

transfer, also synchronized in a 12 ms period, between the

external sensor computer and the KRC-computers, is realized

by the Robot Sensor Interface (RSI).

V. RESULTS

A. Reactionless control: comparison between non-decoupled

and decoupled robot kinematics
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Fig. 5. Comparison between three-joint and decoupled four-joint compen-
sation: dashdot black line - master robot motion; solid blue line - slave robot
decoupled motion; dashed blue line - three-joint slave robot (terminated at
time t=3.4 sec. due to joint position constraints)

Fig. 5 shows numerical solutions for the compensation

problem with a three d.o.f slave robot, as firstly described

in section III-B.4, and for a four d.o.f decoupled-kinematics

robot as described by Eq. (19). It is evident that the second

solution is more successful and that already for the very small

master motion shown, no feasible solution is found in the first

case. However, a high velocity of joint 6 is required despite

the load with large inertia. In fact, due to the relatively small

size of the inertia of the sixth link, a saturation limit on the

velocity of the joint of 18 radians/second was introduced.

B. Reactionless control with decoupled robot kinematics

In Fig. 6 an example master robot maneuver for an

entertainment application is shown. The maneuver is for the

robot dusting a car placed beneath it. For the first 30 seconds

the master is not actuated, to allow for the slave to dissipate

any residual oscillatory motion of the system. Note that all

master robot joints are actuated within a reasonable range of

their workspace.

The effect of the slave robot feedforward compensation is

shown in Fig. 7. The poor performance in the rotation can

be attributed to the velocity saturation limit of the sixth joint.
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Fig. 6. Master robot joint positions for car-dusting maneuver
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Fig. 7. Platform motion for car-dusting maneuver: left-hand side - no slave
robot control; right-hand side - slave robot feedforward control

In Fig. 8 the cases of only feedback and feedforward with

feedback are shown. Note that the first case performs better

than the second. This is due to the coupling between the

platform rotational motion and the translational momentum

equations introduced by matrix Mpr2

−1 in Eq. (28), such

that the rotational error is also constrained by the first three

joints of the slave robot, instead of only by its last joint.

However, the entertainment element for the observer might

also have some say in the choice of one or the other

control method. Note that the slave motion is perhaps more

interesting in the feedforward-feedback case than in the mere

feedback case, as shown in Fig. 9.

Implementation errors may be due to modeling mismatch

(parameter uncertainty, some elasticity in the cables), but

also in the low-level robot control (note that velocities were

commanded) and in the camera time delays. This problem

was efficiently overcome by substitution of the platform
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Fig. 8. Platform motion for car-dusting maneuver: left-hand side - slave
robot feedback control only; right-hand side - slave robot feedback and
feedforward control
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Fig. 9. Slave robot joint positions for entertainment maneuver: dotted blue
line - feedforward-feedback control; solid black line - feedback control

position measurements with velocity measurements, thus

reintroducing the required phaselag in the control law (c.f.

Eq. (28)). This was allowed by the fortuitous ratio between

the time delay and the oscillation periods of the system.

C. Energy dissipation

Fig. 10 shows examples of the slave robot feedback control

for the dissipation of the oscillation energy of the system

initially in motion. For the case on the right-hand side, the

robot is not actuated, showing the natural dissipation of

the system. On the left-hand side, two examples of energy

dissipation are given for parameter sets Kd =[1.0, 0, 0; 0,

1.0, 0; 0, 0, 300.0] and Kd =[0.5, 0, 0; 0, 0.5, 0; 0, 0, 50.0]

respectively.
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Fig. 10. Energy dissipation control. Right-hand side: no control; Left-hand
side: dashed black line - slow dissipation, solid blue line - fast dissipation

VI. CONCLUSION

A control method was developed for the reactionless

control of two robot manipulators, with a distinctive up-

per/lower elbow arm structure, mounted on a cable-suspended

platform. A feedforward component was determined with the

momentum conservation equations of a free-floating robot in

the plane and with kinematic decoupling of the compensating

robot, to reduce the limitations arising from the joint motion

constraints. A control law was presented for the dissipation

of oscillation energy in the system, based on passivity, to

account for the compensation errors arising from model

uncertainty and from implementation errors.
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