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Abstract— This paper presents inverse position kinematics
algorithms with real time capability for Justin, a robotic system
with high redundancy and many degrees of freedom. The
combination of closed form solutions for parts of the kinematic
chain embedded in a nonlinear equation solver is shown to
be advantageous. The algorithms are evaluated with DLR’s
robot Justin both in simulation and reality. Calculation times
of 1 ms are achieved, including various optimization criteria for
redundancy resolution. In case only a single arm with 7 DoF is
considered, a fast calculation time of 250 µs is reached. With
inclusion of an iterative step, reachability can be shown in more
than 99% of the calculations regardless of the initial guess. The
problem of weighting in multi-criteria optimization problems
remains, though in the chosen approach the tool tip position
is never compromised by other criteria due to the partially
closed form solution. The presented algorithm can be applied
to inverse position kinematics for all manipulators with serial or
tree structure and redundant joints in case closed form solutions
are available for parts of the kinematic chain.

I. INTRODUCTION

Inverse position kinematics for robotic systems with many

degrees of freedom (DoF) and high redundancy are still an

open issue. Namely, computation time in control applications

is often too high to reach reasonable rates, and convergence

in case initial guesses are not available is often weak [3],

[9], [10]. This paper presents a method that combines a

nonlinear optimization algorithm with closed form solutions

for parts of the kinematic chain. This way, the joints to

reach given TCP positions and orientations are solved exactly

while additional criteria are combined by weighting factors

and optimized using the robot redundancy. Test bed of the

derived algorithms is the upper body of the DLR robot Justin,

an experimental system for two-handed manipulation shown

in Fig. 1 and Fig. 2.

The algorithms are compared with a standard method for

inverse position kinematics that uses a nonlinear optimization

algorithm and weighted optimization criteria. Comparison

criteria are the computation time, the inclusion of criteria

for redundancy resolution and the ability to provide valid

solutions in absence of good initial guesses.

The paper is organized as follows: Sect. II presents the

developed methods, and performance experiments are shown

in Sect. III. Section IV concludes the paper and points out

further research directions.

Fig. 1. The table-mounted Justin. The joints q1..18 relevant to the described
inverse kinematics algorithm are shown.

Fig. 2. The rolling Justin exhibits a mobile platform. The upper body is
kinematically similar to the table mounted Justin. In the Figure, the base
and tool tip frames of left and right arm are depicted.
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II. COMBINED CLOSED FORM SOLUTION WITH

NULLSPACE OPTIMIZATION

This Section describes the developed inverse kinematics

algorithm. The relevant kinematics of the Justin robot are

given, and the closed form solutions are explained in detail.

The general structure of the inverse kinematics algorithm is

then presented, and the considered optimization criteria are

depicted.

A. Relevant kinematics of the Justin experimental system

The experimental system Justin is shown in Fig. 1 (table-

mounted Justin) [1] and in Fig. 2 (rolling Justin) [8].

The upper body consists of the torso with 3 active DoF

qTorso = q1...3, two DLR light weight arms in right and left

configuration with 7 DoF each (Joints qRightArm = q5...11

and qLeftArm = q12...18), two DLR hands, and the DLR 3D-

Modeller mounted to a pan tilt unit as head. See Fig. 1 for

the joint notation and Fig. 2 for the tool center points (TCP)

relevant for the presented inverse kinematics algorithm. The

joint

q4 = g(q) (1)

is a passive joint, depending primarily on joints q2 and

q3, but also on the tendon tensions that vary with Justin’s

pose and thus with all joints. Goal of the inverse position

kinematics algorithm in scope of this paper is to find the

joint configuration

q =
[

qTorso, qRightArm, qLeftArm

]

∈ R17

with a given initial configuration qinit such that the left and

right TCPs are reached in the task space:

f(q) =
[

rT, lT
]

,

and the passive joint condition (1) is fulfilled. The task

nullspace is used for optimization of further criteria such as

the distance from joint limits, singularities, and collisions.

The taskspace is 12-dimensional (positions and orientations

of the two TCPs), and the joint space is 17-dimensional,

leaving thus 5 dimensions for the task nullspace.

B. Closed form solution for the Justin arms

For the Justin arms, three axes intersect both in the

shoulder and in the wrist. With Pieper’s method [11] it is

possible to calculate six of the seven joint angles in closed

form, while the remaining joint is held fixed, denoted qfix
hereafter. Different algorithms ai are possible according to

which joint i is held fix.

Depending on which joint is held fixed during calculation

of the closed form solution, various additional algorithmic

singularities are encountered: using the formula of Cauchy-

Binet, a singular configuration of a 7-DoF robot occurs if
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with J the robot Jacobian and Ji the i-th minor of the

Jacobian, obtained by omitting column i of the matrix J.

Hence the singular configurations of a 7-DoF robot are

similar to the conjunction of all singular configurations

obtained with one of the joints i fixed. Therefore the number

of singular configurations is obviously lower for the 7-DoF

robot than for any of the 6-DoF robots corresponding to

the Jacobians Ji. Thus the closed form solution that is not

singular has to be chosen according to the initial joint angles

qinit. Furthermore, a solution does not exist for all values of

qfix. This is shown in Fig. 3 (top): for a complete nullspace

motion of the right arm and disregarding the joint limits, the

joint qfix = q7 remains in the intervals

qfix ∈ [68.76◦, 111.24◦] ∪ [−111.24◦, −68.76◦] .

This is reflected in the closed form calculation for joint q6:

q6 = −
s7s8d9 ±

√
k

z + c8d9 + d7

, (2)

with si = sin (qi), ci = cos (qi), di segment lengths, z the

z-direction of the right TCP rT in coordinates of the right

base brT, and

k = s2

8s
2

7d9
2 − z2 + 2 d9 c8d7 + d9

2c2

8 + d7
2. (3)

The term k is plotted in Fig. 3 (bottom) as a function of

q7 during a nullspace motion. Since from (2) the condition

k > 0 needs to be fulfilled, not all values for qfix are

possible. This is also shown in Fig. 3. Similar conditions exist

for all algorithms ai. These conditions and the individual

singularities of each algorithm ai lead to criteria for the

choice of the algorithm ai such that (a) no algorithmic

singularities occur and (b) the joint angle qfix is within the

range of the nullspace.

The calculation speed for the closed form solution without

nullspace optimization is very fast with less than 80 µs.

In the next Subsection, the complete inverse kinematics

algorithm is described. For the Justin system, the arm angles

qRightArm\qfix
and qLeftArm\qfix

are solved in closed

form.

C. Algorithm overview

The developed inverse kinematics algorithm is depicted

in Fig. 4. In the initialization step, the closed form solution

algorithm ai for the right and left arm is chosen according

to the initial joint angles qinit. This way, the parameters

available for nullspace optimization qopt are determined.1

For the Justin system,

qopt =
[

q1, q2, q3, qfixRight, qfixLeft

]

.

An optimization based on the Levenberg-Marquardt algo-

rithm [6] with included closed form solutions is then per-

formed: unless the terminating condition is reached, the

following loop is executed:

1The notation qopt is chosen since all optimization parameters are joint

angles.
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Fig. 3. Joint angles qRightArm of the right Justin arm during a nullspace

motion with torso joints qTorso held constant as a function of q7, q7 > 0

shown at the top. Values for the term k are shown at the bottom. The root
√

k needs to be calculated for the inverse kinematics algorithm a7 with
qfix = q7.

1) Update optimization parameters: The Levenberg-

Marquardt algorithm selects new values for the op-

timization parameters qopt.
2

2) Update passive joints: All passive joints (in case of the

experimental system Justin, only q4 is a passive joint)

are updated according to the initial joints qinit and the

new optimization parameters qopt.

3) Update forward kinematics: Starting from the robot

base, the kinematic chain is updated using the forward

kinematics. This way, the bases brT and blT are

determined.

4) Update closed form solutions: The closed form so-

lutions are calculated. This way all sought joints are

found.

5) Update variable joint limits: In case of the Justin

systems, the joint limits of q2 are a function of q1

and need to be updated in every step.

6) Evaluate optimization criteria: The optimization crit-

era are evaluated, and the Levenberg-Marquardt algo-

rithm continues with step 1 in the next iteration step.

The optimization is stopped if either all criteria are min-

imized to zero, or the maximum number of iterations is

reached, or the decrease in the values of the optimization

criteria functions is below a certain threshold from one

step to another. The next Subsection describes the included

optimization criteria.

2In the first step, qopt is extracted from qinit.

Fig. 4. Inverse kinematics algorithm for combined closed form solution
with nullspace optimization.

D. Optimization criteria

The following optimization criteria are considered:

• c1 Preference position of the arms’ elbows: the distance

between each elbow and a fixed point in space is

minimized.

• c2 Variable joint limits (position dependent): the joint

limits are updated in every cycle. In case a minimum

distance of 15
◦

from the joint limits is reached, a

penalty function is assigned.

• c3 Low joint speeds: The joint speeds are minimized.

• c4 Low joint speeds, scaled with TCP motion: the joint

speeds are variably minimized. If the TCP is moving

fast, also fast Nullspace motions are allowed, whereas

the robot does not move in Nullspace if it does not move

in Cartesian space.

• c5 Singularity avoidance: All arm singularities can be

calculated in closed form according to [5]. Similar to the

joint limits, a penalty function is assigned if a minimum

distance of 15
◦

from the singularities is reached.

III. EXPERIMENT

The inverse kinematics algorithms are currently tested for

the Justin system. First results are shown in the following

Section. The Levenberg-Marquardt algorithm of [7] is chosen

in the implementation. The next Subsection presents exper-

iments on reachability and calculation times. Furthermore,

realtime experiments are depicted.

A. Reachability and Calculation time

Reachability is an important issue e.g. if a goal joint

configuration qd for path planning needs to be generated

from a given goal in task space. In this case, the initial

joint angles correspond to a configuration that is usually far

away from the goal configuration, thus a good initial guess

for the inverse kinematics algorithm is not available. Many

algorithms do not converge in this case and hence fail. Goal

of this work is to propose an algorithm that practically always

finds a solution.

Figure 5 and Figure 6 show the performance of an

implementation of the Closed solution subchains algorithm

as described in Section II with varying maximum number of

iterations n. As optimization criteria, c1, c2, c4 and c5 are

considered. To calculate the error rate and the calculation
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speed, a set of 5000 reachable tool tip frames was generated

and the solution of the inverse kinematics was calculated. To

evaluate the influence of the deviation of the initial solution

from the sought solution, the feasible angles deviation ε

of the initial angles qinit is plotted on the horizontal axis,

defined as follows:

qinit = qvalid + rand · ε, (4)

with qvalid a joint angles vector leading to the sought

tool tip frame, and rand ∈ [−1, ..., 1] a random number.

An error is stated if either the calculated joint angles do not

correspond to the sought TCPs or if joint limits are violated.
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Fig. 5. Influence of the feasible angles deviation and the maximum number
of iterations on the error rate for the closed form subchains algorithm.

From Fig. 5, it can be seen that the error rate is decreasing

with increasing maximum number of iterations n, however

it will not go below a value of 30% for a feasible angles

deviation of 60◦ even with very high values for n. For

feasible angles deviations below 1◦, a maximum number of

iterations of n = 10 is sufficient for many applications. The

calculation time as shown in Fig. 6 is basically proportional

to n.

In order to achieve better reachability, the Closed form

subchains iterative algorithm is implemented, similar to the

Closed solution subchains algorithm, but with n = 150
and additional 100 iterations over the initial values for the

optimization parameters.

Furthermore, for comparison purpose, a Nonlinear opti-

mization algorithm is considered that implements a pure non-

linear optimization using Levenberg-Marquardt. For this al-

gorithm, the joints q = [qTorso q4, qRightArm qLeftArm] ∈
R18 are subject to optimization, while the passive joint

condition (1) is included as optimization criterion. Also

the condition to reach the TCPs is formulated as an op-

timization criterion, and thus it will be influenced by the
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Fig. 6. Calculation time for the closed form subchains algorithm.

other optimization criteria3. Furthermore, criteria c2, c3, and

c5 are considered. Analytic derivatives are given for the

optimization criteria to speed up the Levenberg-Marquardt

optimization4.

Other standard algorithms for inverse kinematics calcula-

tion based e.g. on the Jacobian inverse were shown to have

low performance with respect to reachability in [4] and are

therefore not further considered in this paper.

As results of the performance comparison, Fig. 7 depicts

the error rates and Fig. 8 shows the calculation time. The

Nonlinear optimization algorithm has a higher error rate than

the Closed form subchains algorithm, while its calculation

time is faster. The Closed form subchains iterative algorithm

has a very low error rate regardless of the feasible angles

deviation and thus achieves the goal of independance from

initial joint angles. However the calculation time is very high

as can be seen in Fig. 8.

With variation of n, the calculation time and error rate of

the closed form subchains iterative algorithm can be tuned.

As shown in Fig. 9 and Fig. 10, reachability remains very

high in the range of n ∈ [60, ..., 150].

B. Real time performance

Real time performance is shown in the attached video.

The inverse kinematics algorithm used is the Nonlinear

optimization algorithm. It is implemented in C++ and uses

an s-function as interface to simulink. It runs in a multirate

model with a sampling rate of 100 Hz, while the whole model

runs at 1 kHz. In the video, the rolling Justin is shown. The

task is to hold a tray in a fixed position while the platform

is moving along a circle.

3Note that this algorithm requires that all optimization criteria may be
minimized to zero, otherwise the TCP position is never reached exactly
by the algorithm. This is a drawback of the used optimization method.
However it is considerably faster than other standard methods like e.g.
SQP methods [12] which would allow for constrained optimization. It was
therefore chosen in this paper.

4Analytic derivatives can not be calculated in case of the Closed form

subchains algorithms, since calculation of the nullspace projection is too
time consuming and would be necessary due to the closed form solutions.
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Fig. 7. Error rates as a function of the feasible angles deviation .

Fig. 8. Calculation time for different inverse kinematics algorithms with
range of worst and best case.

IV. CONCLUSION

This paper presents two inverse kinematics algorithms that

combine closed form solutions with nonlinear optimization

for highly redundant robotic systems. The right choice of the

closed form solution such that algorithmic singularities are

avoided is detailed, and the complete algorithm is depicted.

From this, the algorithms are presented and compared to

a standard nonlinear equation solver in the experiment: the

closed form subchains algorithm is suitable for realtime use

with calculation times of 1 ms, while the closed form sub-

chains iterative algorithm achieves a very high reachability

above 99% throughout the workspace with calculation times

of 1 s. Realtime capabilities are presented for the Nonlinear

optimization algorithm as it is applied to the mobile Justin

shown in the attached video. Experiments in realtime with

the Closed form subchains algorithm are current work.

The presented methods are also valid for other serial

kinematic chains. Note however that in each branch of a
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Fig. 9. Influence of the maximum number of iterations on the error rate
for the closed form subchains iterative algorithm.
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Fig. 10. Calculation time for the Closed form subchains iterative algorithm
with variation of the maximum number of iterations.

kinematic tree structure only one closed form solution may

be present. The algorithms will be also tested with DLR’s

minimally invasive robotic surgery system [2]: here, three

robots with altogether 25 active joints are considered. Two

robots are manipulating forceps, while the third robot guides

an endoscope. Currently the inverse kinematics are solved

for each robot independently. A common inverse kinematics

to all robots could allow for better performance by adding

global optimization criteria such as collision avoidance bet-

ween the robots.
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