FPGA based Real-Time Visual Servoing

Stefan Jorg, Jorg Langwald and Mathias Nickl
German Aerospace Center (DLR)
Institute of Robotics and Mechatronics
82234 WeRling, Germany
stefan.joerg@dlir.de

Abstract

Real-time image processing tasks not only require high
computing power but also high data bandwidth. Though
current processors excel in computing power, memory
throughput is still the bottleneck for stream-oriented appli-
cations such as low-level image processing tasks. The alter-
native of special-purpose systems lacks flexibility at a high
design effort and long development time. This effort often
becomes void by the rapid advance of mainstream comput-
ing technology. FPGA technology promises flexibility and
the necessary computing performance at affordable design
costs. In this paper we describe our approach for a proto-
type image processing system for robot vision applications,
based on FPGA technology. We use a commercially avail-
able PCI-Board to implement a typical application based
on the Experimental Servicing Satellite (ESS) scenario.

1 Introduction

Real-time robot vision tasks such as visual servoing and
object tracking require high computational power and data
throughput, which often exceed those available on main-
stream computer platforms. The first steps in a typical real-
time vision application consist of a sequence of low-level al-
gorithms operating on video streams and require only trivial
control structures. This makes them ideal for implementa-
tion on a specialised system [7]. Therefore, an application
can easily be divided into a pre-processing part located on a
dedicated subsystem and a high-level part located on a host
system.

Formerly, we used Datacube MaxVideo pipeline pro-
cessors for implementing our image processing algo-
rithms [2] [4]. The drawback of such specialised systems
is the very restricted set of available operators. To over-
come this limitation, we investigated alternative platforms
for our pre-processing tasks. Special-purpose systems lack
flexibility and come at the cost of much design effort and

long development time. This effort often becomes void
by the rapid advance of mainstream computing technol-
ogy. Field Programmable Gate Arrays (FPGA) promise
flexibility and sufficient computing performance. In the
past, several FPGA based systems have been developed and
evaluated for image processing, SPLASH-2 [3] and Pro-
grammable Active Memories (PAM) [10] being two promi-
nent examples [9]. Those early attempts to create reconfig-
urable platforms focused on flexibility and scalability, thus
yielding costly, general-purpose, multi-FPGA systems with
attached memory.

For the domain of real-time robot vision, we propose a
simpler system consisting of an image acquisition device
and a single FPGA processor, integrated on a single board
which interfaces to a host. To emphasise its intended use
as a dedicated system for pre-processing tasks we label it
the intelligent frame grabber. We validate our concept by
implementing a typical robot-vision application based on
the Experimental Servicing Satellite (ESS) scenario. In

Manipulator P
Py Servicing

Satellite

Target
Satellite

Figure 1. ESS capturing its target

section 2 we illustrate the background of the ESS scenario
and describe the used image processing methods. Section 3
briefly describes the concept of an intelligent frame grab-
ber. In section 4 we lay out the porting and implementation
of each step of the algorithm to the FPGA system. The re-
sults of our implementation effort are discussed in section 5.



2 TheBenchmark Scenario

The Experimental Servicing Satellite (ESS) project in-
vestigated the problem of servicing non-cooperative satel-
lites in or nearly in a geostationary orbit [8]. The goal was
to capture a free-floating satellite by a platform equipped
with an intelligent robotic system (Fig. 1). The most critical
phases in this scenario are the final approach and capturing
of the target.

Within the ESS project a test bed was implemented at our
institute, where those final phases of vision based tracking
and capturing were simulated by two robot manipulators:
one playing the role of the target satellite and the other the
role of the ESS. Capture is accomplished by entering the
target’s apogee engine thruster with a special tool equipped
with sensors and a locking mechanism. Because of the
stringent size constraints resulting from the integration of
the camera into the capture tool, we used a miniature-sized
camera with 12mm diameter and a focal length of 4mm.
Unfortunately, lenses of this small size suffer from high dis-
tortions. For the required visual tracking of the target a very
efficient model-based 3D visual tracking algorithm [11] was
used, which relies on the robust extraction of image fea-
tures such as edges. This requires the use of a calibrated
sensor yielding rectified images. J'0rg et.al [6] transferred
this method to industrial assembly applications. Because of
the relevance of the algorithm to a wide variety of appli-
cations and its typical complexity in terms of robot vision
algorithms, we selected it as a prototype implementation for
our intelligent frame grabber system.

FPGA CPU
Visual-
isation
1 bject
Video| Frame Feature [ 3D Pose
—> P Warper P Gradient p~ Hough - —
Grabber P 9 Tracker [« Tracker

‘ ]

Control

Figure 2. ESS Application

To implement the pre-processing part of the algorithm,
the robust extraction of edges, the following operations are
necessary: 1) Acquisition of PAL fields with size 384x287
at 50Hz. 2) The image is rectified using a cubic distor-
tion model [12]. 3) The image gradient vector components
are computed applying horizontal and vertical Sobel filter
masks. 4) The Hough Transform is used to robustly extract
all possible edge features of the gradient image. The result-
ing Hough Accumulator is sent to the CPU based feature
tracker (see Fig.2).

3 Thelntelligent Frame Grabber

The concept of an intelligent frame grabber is based on a
strictly pipelined architecture: the image acquisition starts
a pipeline of subsequent image processing operators. This
concept allows modular application design at the operator
level by implementing a framework for embedding opera-
tors in the pipeline. The high-level part of the application
resides on the host and controls the pre-processing part, i.e.
the parameters of each operator and the image acquisition,
via a host interface. The pre-processor outputs images or
more abstract information. The host interface extends the
pipeline into the host which requires a tight coupling of host
and intelligent frame grabber supported by a proper com-
munication method (see Fig.2).

4 The System Implementation

We use a commercially available image processing board
with an analogue frame grabber module and a single
XILINX Virtex XCV2000E-6 FPGA with one SRAM bank
and 6 SDRAM banks. The FPGA operates at 50MHz. As
a host we use a Pentium Il1 class Linux system. The im-
age acquisition device is provided as VHDL library by the
board manufacturer. For the physical connection of the op-

Hough Threshold
video i
NMAC gradient Accumulator
Warper Sobel X magnitude Stream

Cordic | ine_eq:angle | Hough
Units Accu-
line_eq: distance | muluator

dx
NMAC | dy

Sobel Y

Image Link

Figure 3. Implementation of the Hough Trans-
form for Lines

erators within the FPGA we designed an image link, which
consists of the data itself (e.g. grey-level pixel stream) and
three synchronisation signals. The synchronisation signals
Pixel Enable, End Of Line and End of Frame implicitly de-
fine the current image size.

The implementation of each of the three operators of
our example scenario is described in the following sec-
tions. The processing pipeline starts with the warper opera-
tor, followed by the x/y Sobel gradient filtering stage, con-
cluded by the Hough Transform for lines, which involves
the calculation of the gradient vector from the x/y gradi-
ents (Fig. 3). The immediate result of the Hough Trans-
form is the Hough Accumulator, which is transferred to the



host for further processing, thus marking the end of the pre-
processing stage.

4.1 Image Rectification
The warper operator for image rectification is based on a

sub-pixel accurate coordinate transformation using the fol-
lowing bicubic distortion polynomial:

= ap + a1x + a2y + a3JL’2 + aqry + a5y2
+a6:r3 + a7z2y + agxy2 + a9y3

Y = bo+bix + boy + bsx® + bywy + b5y
+bex” + brx’y + bswy® + boy” @

The warper structure is shown in Fig. 4. The Address
Generator computes the source address for the current out-
put pixel using (1). The polynomial is implemented with 18
multiply and accumulate fixed point operations optimised
for the given distortion coefficients. The integer part of the
computed source address addresses the Input Region Buffer,
which yields the addressed source pixel and its right, lower,
and lower right neighbours. Using the fractional address
part the grey level of the output pixel is bilinear-interpolated
from these four input pixel grey levels.

Output Index

Controller (xy) | Address

Generator
y Source Address
integer part
Latest Line x.y) Source Address
Index fractional part
Y |
) 4 Neighbour .
Distorted |INput Region Pixels Bilinear Rectified

Image Buffer Interpolator Image

Figure 4. Image Rectification

A straight-forward implementation would require the
buffering of the whole input image. An analysis of the cam-
era specific distortion coefficients yields a fixed maximum
number of source image lines to be buffered during the gen-
eration of one output line. In our case, the required buffer
could be reduced to 32 input image lines. Therefore the
Input Region Buffer could be placed within the FPGA.

The Input Region Buffer is filled by the incoming source
pixels and the Controller is notified of the latest completed
source line. If all lines needed for the next output line are
available, the Controller generates the timing and pixel in-
dices for that line at the full pixel rate of 50 MHz.

4.2 Sobel Gradient Filter

For the gradient calculation we implemented two paral-
lel 3x3 neighbourhood operators to realize vertical and hor-

izontal Sobel gradient filters at pixel rate (Fig. 3). The im-
plementation is optimised for the Sobel coefficients. Two
registers per line and two FIFOs are required to buffer the
input pixels. Figure 5 shows the implementation of the ver-
tical Sobel filter. After an initial delay of two lines and two
pixels the filter yields one output pixel per input pixel.

Image

Figure 5. Vertical Sobel Filter

4.3 An Optimised Hough Transform

The Hough Transform for lines is described in detail in
[5]. We formulate the feature equation for the Hough Trans-
form as follows:

d=wxcosf+ ysinf 2

where d is the distance of the line to the origin and 6 is
the angle the x-axis makes with the perpendicular to that
line. This @ is the phase of the grey level gradient vector for
a point p on that line:

_ Vy
0 = arctan (VI) 3)

The magnitude of the gradient vector is defined as

V|| =1/V,?+ V,? (4)

We implement the necessary trigonometric functions
with the CORDIC algorithm as shown by Andraka [1]. A
first CORDIC unit in vectoring mode implements (3) and
(4). A second CORDIC unit rotates each image point by ¢
around the origin. This is equivalent to a rotation of our line
(2) around the origin, i.e. the line becomes vertical. Thus
the x component of that CORDIC unit equals d amplified
by the CORDIC gain. Both units rotate simultaneously by
the same angle and therefore share one angle accumulator.

The Hough Accumulator represents the complete, but
quantised, parameter space of (2). We implement the ac-
cumulator as memory addressed by d and 6. The thus ad-
dressed cell is incremented when the magnitude of the gra-
dient vector is larger than a configurable threshold. This re-
duces the influence of noise. The 16KB accumulator which
is small compared to the source image, is transferred to the
host. There the maxima in the accumulator, representing
the edge features, are sub-pixel accurately extracted.



5 Experimental Results

We successfully implemented the pre-processing task of
the ESS project as a validation of our concept of an intelli-
gent frame grabber based on flexible logic. Figure 6a de-
picts the distored test image of a chequered board, Fig. 6b
shows the rectified gradient image and Fig. 6¢ shows the
resulting Hough Accumulator. All implemented algorithms

Figure 6. a) Distorted Image b) Rectified Gra-
dient Image ¢) Hough Accumulator

process at real-time, i.e. PAL field rate. The Hough Accu-
mulator is transferred to the host and processed at that rate,
extracting every dominant edge feature in an input image.

The processing pipeline runs parallel to the image acqui-
sition, i.e. processing starts as early as the warper is able
to deliver the first rectified line. Compared to a standard
frame grabber setup, the pre-processing stage is completed
at about the same time the frame grabber delivers the source
image to the host. Since the system clock operates at 50
MHz, the pipeline yields 50 MPixels/sec sustained through-
put. To compare this figure with a general-purpose architec-
ture we measured the throughput of a warper operator on a
Pentium IV 3.0GHz/FSB800 system. An optimisied imple-
mentation achieves a maximum pixel rate of only 44 MPix-
els/sec. Moreover, this rate drops with every operator and
processing stage added to the application. The intelligent
frame grabber achieves shorter delay, constant throughput
and an idle CPU available for further processing and visu-
alisation tasks.

The FPGA usage of the application is moderate (see
Thl. 1). We require only 12.3% of the logical resources
(Configurable Logic Blocks) and 57.5% of the internal
RAM of our medium sized FPGA.

6 Conclusions

Typical pre-processing applications fit well in current
FPGAs and can be implemented with reasonable effort.
This is true for operators utilizing only internal memory,
which is flexible and efficiently usable. Once operators de-
pend on external resources the board design constrains its
implementation. Thus the structure of an application af-
fects the design requirements of an intelligent frame grab-

Operator | Logic Blocks % | Memory/kB %
Warper 1645 | 8.6 12 | 15.0
Gradient 202 | 11 2| 25
Hough 511 | 2.6 32 | 40.0
Total 2358 | 12.3 46 | 57.5

Table 1. Used FPGA Resources

ber board. Even for our specific domain a one-fits-all ap-
proach will not work. Future work will include the devel-
opment of a highly-integrated board with design focus on
easy adaption to the requirements of different applications.

References

[1] R. Andraka. A survey of cordic algorithms for fpga based
computers. In Proceedings of the Sixth ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays,
1998.

[2] K. Arbter, J. Langwald, G. Hirzinger, G.-Q. Wei, and
P. Wunsch. Robust Vision for Vision Based Control of Mo-
tion, chapter Proven Techniques for Robust Visual Servo
Control. IEEE Press, 2000.

[3] P. Athanas and A. Abbott. Real-time image processing on a
custom computing platform. In IEEE Computer, Feb. 1995.

[4] Datacube, Inc., Danvers, MA. Pipeline Image Processing
with ImageFlow, Nov. 1998. Document No. MS001-2.1.

[5] R.O.Duda and P. E. Hart. Use of the Hough transformation
to detect lines and curves in pictures. Comm. Assoc. Comput.
Mach., 15(1):11-15, 1972.

[6] S.J6rg, J. Langwald, J. Stelter, C. Natale, and G. Hirzinger.
Flexible robot-assembly using a multi-sensory approach. In
Proc. IEEE International Conf. on Robotics and Automa-
tion, San Francisco, CA, 2000.

[7]1 W. Mangione-Smith and B. Hutchings. Configurable com-
puting: The road ahead. In R. Hartenstein and V. Prasanna,
editors, Reconfigurable Architectures: High Performance by
Configware, pages 81-96, Chicago, 1997. IT Press.

[8] E. Settelmeyer, R. Hartmann, K. Landzettel, E. Lehrl, and
W. Oesterlin. The experimental servicing satellite ess. In
21th. ISTS Conference, Omiya, Japan, 1998.

[9] R. Tessier and W. Burleson. Reconfigurable computing for
digital signal processing: A survey. Journal of VLSI Signal
Processing, 28(1):7-27, June 2001.

[10] J. WVuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati,
and P. Boucard. Programmable active memories: Recon-
figurable systems come of age. IEEE Transactions on VLSI
Systems, 4(1):56-69, 1996.

[11] P. Wunsch and G. Hirzinger. Real-time visual tracking of
3-d objects with dynamic handling of occlusion. In Proc.
|IEEE International Conf. on Robotics and Automation, Al-
buquerque, NM, 1997.

[12] P. Wunsch, G. Koegel, K. Arbter, and G. Hirzinger.
Kalibrierung eines nichtlinearen, binokularen
hand-auge systems. Technical Report No. 515-
96-27, German Aerospace Center - DLR, 1996.
http://www.robotic.dlr.de/vision/projects/Calibration/.



