
Non-Parametric 3D Shape Warping
Ulrich Hillenbrand

Institute of Robotics and Mechatronics, German Aerospace Center (DLR), D-82234 Wessling
Ulrich.Hillenbrand@dlr.de

Abstract— A method is presented for non-rigid alignment
of a source shape to a target shape through estimating and
interpolating point-wise correspondences between their surfaces
given as point clouds. The resulting mapping can be non-smooth
and non-isometric, relate shapes across large variations, and find
partial matches. It does not require a parametric model or a
prior of deformations. Results are shown for some objects from
the Princeton Shape Benchmark and a range scan.

I. INTRODUCTION

Shape warping is the process of estimating a correspondence
or mapping between the points defining two shapes of the
same or a similar category. Applications arise, e.g., when
tracking shape deformations, comparing shapes for locating
and quantifying similarity, and building shape category models
from examples. Especially for the latter two cases, warping
techniques are desirable that cover large and diverse shape
variations without prior knowledge.

Most previous work on warping of 3D surfaces has been in
the context of registering range data sets while compensating
for low-frequency errors or modeling of a deformable object.
Some of those methods have been based on non-rigid exten-
sions to the iterative closest point (ICP) algorithm [1], [2], [3].
While in ICP-type algorithms correspondences and alignment
are estimated in an alternating fashion with separate cost func-
tions, an alternative technique optimizes both correspondences
and alignment simultaneously in a joint cost function [4].
Approximately isometric (in the geodesic sense) deformations
can be estimated by a variant of multidimensional scaling [5].

One problem with all these approaches to shape warping is
that they need regularization by constraints or penalty terms,
enforcing some degree of smoothness, stiffness, rigidity, or
isometry, which effectively act as a deformation prior. While
this makes sense in the application contexts of the above
methods, for modeling shape variability within an object
category, such constraints are generally not valid. Another
drawback is their formulation as a non-convex optimization
problem, such that convergence to the global optimum is hard
to ensure.

The algorithm described in this paper differs from previous
ones for 3D shape warping in two important respects.
• It is not formulated as a (non-convex) optimization prob-

lem, but rather as one of Monte-Carlo-style density esti-
mation, avoiding most problems with global convergence,
and thus handling large misalignment and deformations
between shapes.

• It does not use a probabilistic model or prior of deforma-
tions. In this sense, the estimator is non-parametric and

purely data-driven, and thus handles even non-smooth and
non-isometric deformations.1

Like some of the other techniques, it finds a partial match
between shapes that are not fully consistent.

II. THE ALGORITHM

The three main steps of the shape warping algorithm are
A. deformation-tolerant pose estimation,
B. correspondence estimation,
C. surface-point mapping.
It is worth noting that in this procedure, there is no joint es-

timation of alignment and correspondences, in contrast to most
other schemes. Rather, the initial rigid alignment is estimated
without determining correspondences. Once a reasonable rigid
alignment is achieved, estimation of correspondences is a
comparably simple step. In turn, once correspondences are
determined, mapping of surface points is trivial. The most
critical step in the proposed procedure is hence the initial rigid
alignment.

Each of these steps will now be explained. The warping is
directed from a source shape to a target shape.

A. Deformation-tolerant pose estimation

The algorithm starts by globally estimating a rigid align-
ment, or pose, of the source shape to the target shape. The rigid
alignment has to tolerate significant deviations of the target
shape from the source shape. A reasonable alignment surely
is one where corresponding parts of the two objects come
as close as possible to each other. This not only reflects our
intuition about the ‘right’ alignment of two different shapes,
it is also crucial for the following step of correspondence
estimation. However, we seek such an alignment without a
hint as to the correct correspondences.

A correspondence-free alignment that is also robust to large
geometric deviations is provided within the framework of
parameter-density estimation and maximization, or parameter
clustering. This is a robust estimation technique based on lo-
cation statistics in a parameter space where parameter samples
are computed from data samples [6], [7]. The estimator may be
viewed as a continuous version of a generalized, randomized
Hough transform. 2 In the present variant, the sampling is from
a surface description based on points with their local surface

1Note, however, that even non-parametric techniques necessarily depend
upon the choice of algorithmic parameters.

2Parameter clustering is fundamentally different from RANSAC-style tech-
niques, in that no quality measure of hypotheses, or any kind of statistics, is
evaluated in data space.
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normal vector, which we shall refer to as surflets. In particular,
no special geometric features or high-level primitives need to
be extracted from the data, making the procedure applicable
to dense range data of all shapes.

The surface normals can be estimated from range data by
local covariance statistics: the eigenvector for the smallest
eigenvalue of the covariance matrix, computed from points
within a local surface region, is a useful estimate of surface
normal orientation. The outward direction of the normal is
known from the gaze direction of the sensor.

Let S ⊂ R3 be the given set of points on the source shape
and T ⊂ R3 the given set of points on the target shape.
Let further be u(s) and v(t) the (normalized) surface normal
vectors for points s ∈ S and t ∈ T , respectively.

A pose hypothesis can now be computed from a minimum
subset of two source surflets matched against a minimum
subset of two target surflets. The sampling proceeds thus as
follows.

1) Randomly draw a point pair s1, s2 ∈ S.
2) Randomly draw a point pair t1, t2 ∈ T , such that

the surflet pair {(t1, v(t1)), (t2, v(t2))} is geometrically
similar to {(s1, u(s1)), (s2, u(s2))}.

3) Compute a rigid motion that aligns
{(s1, u(s1)), (s2, u(s2))} to {(t1, v(t1)), (t2, v(t2))},
up to distortions.

4) Compute and store the six parameters of the hypothetical
motion.

In step 2) of the sampling procedure, a metric for surflet
pairs and an efficient procedure for enforcing similarity when
drawing from T are needed. The intrinsic geometry of a surflet
pair can be smoothly described by four parameters, in various
ways. The Euclidean metric in such a parameter space will
provide a similarity measure for surflet pairs. Similarity of the
surflet pair sampled from T in step 2) to the one sampled
from S in step 1) is efficiently enforced by indexing into a
hash table of surflet pairs previously sampled from T . The
table is accessed through the four parameters of the drawn
S-pair as the key.

Rigidly aligning a surflet pair with another in step 3) re-
quires trading off between positional and directional informa-
tion. Unlike for pure point sets, there is no unique principled
formulation of a cost function. Here we estimated the rotation
from the surface normals alone, while the translation has to
be estimated from the surface points. More precisely, the ro-
tation between the two surflet pairs {(s1, u(s1)), (s2, u(s2))}
and {(t1, v(t1)), (t2, v(t2))} was computed to minimize the
squared angles between the normals, i.e.,

R = arg min
R′∈SO(3)

2∑
i=1

arccos2(v(ti) ·R′ u(si)) , (1)

and the translation is then the least-squares solution on the
points, i.e.,

T = arg min
T ′∈R3

2∑
i=1

‖Rsi + T ′ − ti‖2 . (2)

Fig. 1. Alignment found for two different mugs, and for one of the mugs
and a liqueur glass.

The parameterization of rigid motions chosen for sampling
step 4) may have an influence on the result. In fact, the
parameter density from which we sample depends upon this
choice. A parameterization that is consistent for clustering is
generally recommended, in the sense of [6].

By repeatedly executing the sampling procedure 1)–4)
above, we obtain samples from the parameter density for the
rigid alignment problem. This parameter density is similar in
spirit to a posterior density, but without assuming a probabilis-
tic observation model [6].

The parameter samples can be stored in an array or a tree
of bins. The sampling stops, when a significant cluster of
samples has formed, as judged from the bin counts. Then the
location of maximum parameter density is searched by starting
a mean-shift procedure [8], [9] from the center of the bin
with the highest parameter count. The mean-shift procedure is
repeatedly started from the bin with the next highest parameter
count, until the density found in the converged mean-shift
window is significantly lower than found in the first run of
mean shift. From all the local density maxima found through
mean shift, the location in the 6D parameter space of the
largest maximum is returned as the pose estimate (R̂, T̂ ) ∈
SO(3)×R3 of the target shape relative to the source shape. By
re-starting the mean shift from several points in high-density
regions of parameter space, it is likely that the strongest mode
of the density is found. Details of the implementation will be
presented elsewhere [10].

Figure 1 shows two examples of alignment of different
shapes found through the described procedure.

B. Correspondence estimation

Correspondence is here defined as a directed relation be-
tween points of the source shape and points of the target shape,
and symmetry shall be enforced only at the mapping stage;
see next section. Hence, not all directed correspondences
established will affect the final mapping of surface points. In
a sense, the true correspondences will only be those realized
by the final mapping.

Since rigid alignment of source and target shapes has
brought corresponding parts already close to each other, we
can again rely on the simple local surface description by
surflets to find correspondences, based on proximity of points
and alignment of normal vectors.

The surface normal vector u(s) at a source point s ∈ S
is registered with the target surface through the rotation R̂,
the estimate from initial alignment of the shapes; cf. previous
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section. We define the set of target points with a normal vector
v(t) oriented at most an angle δ away from R̂ u(s),

T R̂δ (s) =
{
t ∈ T | v(t) · R̂ u(s) > cos δ

}
. (3)

The points belonging to T R̂δ (s) can be efficiently retrieved
from a hash table indexed by normal orientation. Then the
forward correspondence of point s ∈ S is

Cf(s) = arg min
t∈T R̂δ (s)

‖R̂ s+ T̂ − t‖ . (4)

Likewise, we define the set of source points

SR̂δ (t) =
{
s ∈ S | v(t) · R̂ u(s) > cos δ

}
, (5)

and the backward correspondence of point t ∈ T is

Cb(t) = arg min
s∈SR̂δ (t)

‖R̂ s+ T̂ − t‖ . (6)

The shape warps shown in this paper have used a tolerance
parameter δ = 35 degrees for surface normal misalignment.

The constraints on correspondence derived from point dis-
tance and inter-normal angle are here enforced in a sequential
manner. This avoids trading off Euclidean point differences
against angular normal differences between surflets. Alterna-
tively, one could employ a surflet metric that has an Euclidean
contribution for the points and an angular contribution for the
normals.

C. Surface-point mapping

The mapping process interpolates the previously found
directed correspondences and enforces their symmetry. Inter-
polation was done here in the most primitive way. For every
source point queried, the n closest points from S are found,
in the Euclidean metric. The forward-mapped point on the
target shape then is the average of the n forward-corresponding
target points. Formally, a point x on the source shape (but not
necessarily in S) gets mapped forward according to

Mf(x) =
1
n

∑
s∈Sn(x)

Cf(s) , (7)

where Sn(x) ⊆ S is the set of n nearest neighbors of x within
S. Likewise, a point y on the target shape (but not necessarily
in T ) gets mapped backward according to

Mb(y) =
1
n

∑
t∈Tn(y)

Cb(t) , (8)

where Tn(y) ⊆ T is the set of n nearest neighbors of y
within T . The shape warps shown in this paper have used
a neighborhood of n = 3 for interpolation. Equations (7)
and (8) represent something like a zeroth-order interpolation
of a discrete map. Alternatively, more refined methods of
interpolation between correspondences can be tried, such as
distance-weighted averaging, higher-order splines, or thin-
plate splines.

Symmetry of interpolated correspondences is enforced
through a forward/backward consistency check of the map-
pings. A point x on the source shape is mapped to a point

y = M(x) := Mf(x) on the target shape, if and only if its
forward and backward mappings agree within a radius of ε,
that is,

‖x−Mb(Mf(x))‖ < ε . (9)

Note that the forward/backward consistency check is similar
in spirit to the left/right consistency check in stereo image
processing: it eliminates false matches from the map, allowing
for partial matches between very different shapes. The shape
warps shown in this paper have used a tolerance parameter
ε = 0.04 object-bounding-box diagonals for forward/backward
mapping discrepancy. The result of mapping is the final result
of warping.

III. RESULTS

In this section, the behavior of the shape warping algorithm
is illustrated by some representative processing examples. The
test objects, some mugs and a liqueur glass, have been taken
from the Princeton Shape Benchmark [11]. Moreover, a scan
of a mug with our laser stripe profiler [12] is included as a test
case to also demonstrate the applicability to noisy and partial
representations.

For visualization of the shape warps, a regular pattern of
surface points from the source mug, colored to code the three
Cartesian coordinates, is mapped through (7), conditioned on
(9), to the target objects; see fig. 2.

Evidently, the warps are fairly smooth and generally connect
corresponding points on the object surfaces. In particular,
functionally critical parts like handles and mouths are correctly
mapped.

In the example shown in fig. 2a), the source and target
shapes are fairly similar, resulting in a rather complete map-
ping of the source surface to the target surface.

In the example shown in fig. 2b), when warping from the
source mug to the target mug, a change in the mugs’ surface
topology occurs: the handle of the target mug consists of two
separate handle parts. The shape warp respects this topological
change by mapping the two sides of the source handle to the
closer of the two parts of the target handle. Only very few
points get interpolated in between the two parts.

In the example shown in fig. 2c), the handle of the target
mug is degenerated to a tiny extension near the rim of the
mouth. As a result, only the upper part of the source handle
is mapped to the degenerate target handle.

When warping from the source mug to the liqueur glass as
shown in fig. 2d), the corresponding parts of the objects are
correctly identified. In particular, it can be inferred from the
warp that the liqueur glass has no handle, while the mug has
no stem.

When warping from the source mug to the scanned mug as
shown in fig. 2e), the fraction of the source mug corresponding
to the partial scan is correctly identified; cf. fig. 3 for the
scanned mug data.

IV. DISCUSSION

A procedure for establishing meaningful correspondences
between points on different shapes from the same or similar
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Fig. 2. Shape warping examples. A regular pattern of surface points from the
source mug and their mappings to the target shape are colored to code their
three Cartesian source coordinates. In each example, only points satisfying
condition (9) are shown.

categories has been proposed. The described technique makes
no strong assumptions as to the nature of the shape variation.

Fig. 3. Partial scan of a mug used as target shape in fig. 2e).

It should hence be useful in situations where such knowledge
is weak, e.g., when comparing unknown shapes for locating
and quantifying similarity, or when building shape category
models from examples.

Its generality may, on the other hand, also give rise to a
potential weakness of the presented method. Thus, there may
well be situations where satisfactory point correspondences
across shapes need guidance by additional constraints or more
specific geometric features than just aligned surface points and
normals.

In general, there is no uniquely correct way of making
correspondences between points across different shapes. This
fact makes it hardly possible to quantify performance of
shape warping without a specific application context or other
constraints derived from known inter-shape relations.
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