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Abstract— Classical position-based visual servoing approaches
rely on the presence of distinctive features in the image such as
corners and edges. In this contribution we exploit a hierarchical
approach for object detection, initial-pose estimation, and real-
time tracking based first on colour distribution and subsequently
on the shape and texture information. The shape model of the
object is not limited to surface primitives but allow for any
free-form surface not subject to self-occlusion. We evaluate the
approach as part of a handshake scenario where a 7-DoF robot
takes a free moving object over from a human.

I. INTRODUCTION

Present robotic research efforts are directed towards intel-
ligent service-robots operating side-by-side and also closely
together with humans. The tactile contact plays an important
role in human-machine interaction, additionally to the visual
and auditive information. This contact is realized whenever a
person hands an object over to the robot for manipulation.

In order to perform this handshake the robot has to fulfill
autonomously different tasks. First, the object has to be
detected and classified. Then, the pose of the object has to
be estimated to enable tracking of the object motion in 3-D.
The latter task has to be performed with 6-DoF to ensure a
precise grasp and accurate subsequent manipulation.

The problem has been addressed in the past either with
respect to robot control or with respect to computer vision.
Grasping of moving objects has been shown for simple geo-
metric objects (e.g. [1], [2]) or for the interception of objects
moving on a plane [3] whereas the DoFs are usually restricted.

Image-based visual servoing approaches benefit from a tight
coupling of vision and control in that exact knowledge about
the object and about hand-eye calibration become dispensable.
However, these approaches show view dependency especially
with respect to the object distance. Position-based servoing on
the other hand uses vision algorithms to directly estimate the
relative pose between robot end-effector and the object. Malis
et al. [4] combined the benefits of image and position-based
visual servoing in their 2 1

2 -D approach. The approach how-
ever is designed for co-planar features points which severely
restricts the objects shape.

The majority of 3-D tracking approaches for position-based
servoing rely on the localisation of a-priori known artificial
or natural landmarks, e.g. [2], [5]. Often, these approaches
depend on the correspondence between brightness steps and
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Fig. 1. The DLR-Robutler: A mobile service robot with a 7-DoF light-weight
robotic arm and an eye-to-hand camera system.

edges of the 3-D surface, which are not present for general
free-form surfaces.

Direct methods on the other hand, deduce the object motion
on a pixel basis. Many approaches have been developed since
the pioneering work of Lucas and Kanade [6] but concentrate
on the efficient tracking of planes by means of the 8-DoF
homography, e.g. Diehl et al. [7], Buenaposada et al. [8] and
Baker et al. [9].

Some efforts have been made to upgrade tracking of pla-
nar surfaces primitives to more general surfaces. Cernuschi-
Frias et al. [10] presented an estimation model for simple
parametrised surfaces while Ramey et al. [11] described the
target surface with B-splines. Lately, Sepp [12] derived an an-
alytic description of the tracking problem for general surfaces
modeled as 3-D point clouds.

In the following we present position-based visual servoing
for a mobile robot with a 7-DoF robotic arm. A camera is
rigidly mounted on the mobile platform and overlooks the
scenery. Here, we don’t focus only on a tracking approach but
solve also the detection and re-initialisation problems leading
to a robust visual servoing application.

First, the process of hierarchical detection and tracking is
outlined in Sect. II. The first stages rely on matching by means
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of a colour histogram as described in Sect. III while the latter
stages are build on shape and texture as similarity measure
(see Sect. IV). We evaluate and compare the single stages in
Sect. V and draw our conclusions in the final Sect. VI.

II. HIERARCHICAL APPROACH

Solid visual servoing applications rely on a robust re-
initialisation after the target gets lost. In the following a
hierarchical approach for object detection, localisation, and
tracking is presented which resumes the idea of incremental
focus of attention of Toyama and Hager [13]. The localisation
property increases step by step from a 2-DoF object detection
to an accurate 6-DoF pose representation. For this purpose,
the object is first localized and tracked based on a colour
histogram as similarity measure which is generally not pose
discriminative. Thereafter, the pose is refined to 6-DoF by a
similarity measure based on shape and texture. The levels of
localisation and tracking are:

1) 2-DoF object detection based on colour histogram
2) 3-DoF object tracking with Mean-Shift
3) initial 6-DoF object tracking with particle filter
4) accurate 6-DoF object tracking with IC-R

Conversely, when the object is lost on a specific level, the next
lower level of localisation or tracking is invoked (see Fig. 2).
The levels are changed following individual error thresholds.
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Fig. 2. Hierarchical featureless tracking scheme.

III. HISTOGRAM-BASED LOCALISATION AND TRACKING

Histograms of colour or gray-level gradient distributions
are frequently used because they are robust with respect to
illumination changes and to pose variations. Here, we focus
on the colour distributions of Comaniciu et al. [14] as target
models.

Let therefore I(v) ∈ IN3 denote the colour value at the
image position v ∈ IN2. The function h(c) ∈ {1, 2, . . . ,m}
maps each colour value c ∈ IN3 to a colour-bin index. Then,
the local colour probability for the specific colour-bin b at the
position u in the image is defined by

p(u, b) =
∑

v kσ(u− v) δ(h(I(v))− b)∑
v kσ(u− v)

(1)

where δ is the Kronecker delta function and where the colour
occurrence is weighted by an anisotropic kernel function

kσ(u) = exp
(
−1

2
uTdiag

(
σ−2

)
u
)

(2)

according to the spatial distance to the center. Here, the
diagonal 2 × 2 matrix diag

(
σ−2

)
ensures individual scaling

along the axis.
Now, the object to be tracked is recognized by the prior

colour probability q(b) obtained from a reference image. The
similarity between a local colour distribution p and the prior
distribution q is measured by the Bhattacharyya coefficient

ρ(p, q) =
∑

b

√
p(u, b) q(b) (3)

which results in 1 for identical distributions.

A. Localisation

The object can be detected evaluating the Bhattacharyya co-
efficients in the image plane. In order to reduce the occurrence
of local minima and to decrease the computational costs, the
coefficients are computed at selected positions only.

In this sense, let σ2
x and σ2

y be the variance of the ker-
nel k which determine the spatial decay of the function.
The Bhattacharyya coefficients are sampled at intervals 2σx,
2σy which assures good coverage in the image. Let S =
{(2iσx, 2jσy)|i, j ∈ IN} be the set of sampling coordinates,
then two dimensional object localisation is performed by

û = arg max
u∈S

∑
b

√
p(u, b) q(b) (4)

where the detection is rejected whenever the corresponding
Bhattacharyya coefficient is below the detection threshold θD.

B. Tracking

Object tracking starts immediately after localisation in the
image plane. At this stage the initial two-dimensional position
is augmented by the additional scale parameter.

Tracking starts by computing the Mean-Shift of Comaniciu
et al. [14] in planar coordinates. Here, every position in the
neigbourhood of the current estimate is weighted according
to the relevance of the corresponding colour-histogram value.
The relevance is determined by the ratio between the prob-
ability of the colour value in the reference pattern to the
corresponding probability in the current pattern, which reads

w(u,v) =
∑

b

√
q(b)

p(u, b)
δ(h(I(v))− b) (5)

for an image coordinate v with respect to the location u.
Again, the kernel function of (2) is used and finally the new
location û of the object is estimated by

û =
∑

v kσ(u− v) w(u,v)u∑
v kσ(u− v) w(u,v)

. (6)

Subsequently, the scale of the object is identified by the
evaluation of its relevance at 2n + 1 scales

σs = σ · as ; −n ≤ s ≤ n (7)



based on the current scale σ and base a > 1 of logarithmic
coordinate scale. The new scale index ŝ and scale σ̂ are
estimated according to

ŝ =
∑

s

∑
v kσs(û− v) w(û,v) s∑

s

∑
v kσs(û− v) w(û,v)

; σ̂ = σ · aŝ . (8)

Note that here we simply use the same kernel as in (6)
instead of a Laplacian of Gaussian or a Difference of Gaussian
as proposed by Collins [15]. The steps of shift and scale
computation are alternated with continuous update of the
location u and the scale σ leading to a 3-DoF tracking process.

The parameters shift u = (ux, uy) and scale σ are mapped
to position information in 3-D for a full-perspective projection,
given the knowledge about the intrinsic camera parameters

K =

 α 0 u0

0 β v0

0 0 1

 (9)

and the physical extent d of the object. The latter is related
to the position tz in direction of the z-axis by the formula
α · d ∝ tz · σ. Therefore, the translation parameters of the
object are computed according to tx

ty
tz

 =
αd

σ

 (ux − u0) /α
(uy − v0) /β

1

 . (10)

Tracking with the extended Mean-Shift approach is performed
for a constant amount of time and switches back to the
previous detection stage when the Bhattacharyya coefficient
falls below the threshold θD. The next tracking stage is
invoked as soon as the minimization process converges, that
is the Euclidean distance ‖û − u‖ and |σ̂ − σ| falls below a
convergence threshold θM.

IV. SHAPE-TEXTURE-BASED TRACKING

In order to get exact information about the object pose in
6-DoF, brightness information is linked to shape information.
Here, the object surface is modeled by an unordered set of
sample points X = {x1,x2, ..,xN} ⊂ IR3. No constraint
other than visibility is imposed on the surface. The surface
points x ∈ X are subject to rigid-body motion described by

m(x, µ) = R(µ)x + t(µ) (11)

for a pose µ ∈ IR6 and the associated 3-D rotation R(µ)
and translation t(µ). The so transformed point cloud is finally
mapped to the image under full perspective projection

p(x) =
(

kT
1 · x

kT
3 · x

,
kT

2 · x
kT

3 · x

)T

, K =

 kT
1

kT
2

kT
3

 (12)

where K ∈ IR3×3 is the matrix of intrinsic camera parameters.
Let I(v) ∈ IR be the brightness value of the current image
at position v then the texture value for a single model point
xi ∈ X is determined by

Ii(µ) = I(p(m(xi, µ))) (13)

for the pose µ. The surface texture is assumed to remain
constant over time. The right pose estimation maximizes the
above similarity between the current texture Ii(µ) and the
reference texture Ti

(
µ0
)

of the surface for the image T
and pose µ0. The relationship between similarity and pose
estimation µ is hereafter expressed by the probability density
function (p.d.f.)

p(I|µ) =
N∏

i=1

1√
2πσt

exp

(
−
(
Ii(µ)− Ti

(
µ0
))2

2σ2
t

)
, (14)

given conditionally independent observations x ∈ X . Thus,
the objective is to maximize the probability with respect to
the pose µ.

However, the illumination on the surface changes as the
object moves and generates biased measurements. This effect
can be alleviated by normalizing the brightness value distri-
bution in Ii to that in Ti. Let E(.) be the expected value of
a distribution and let Var(.) be the variance, then the current
texture Ii in (14) is replaced by

Īi(µ) =
Var(Ti)
Var(Ii)

(Ii − E(Ii)) + E(Ti) . (15)

The task of finding the most probable pose estimation is a
classical minimisation problem solve here in two stages. A
first estimation is determined by Monte-Carlo sampling which
features a large range of convergence. A second stage involves
local Gauss-Newton minimisation showing fast convergence.

A. Particle Filter Tracking

Particle filtering is employed in order to refine the 3-DoF
pose estimation from the previous Mean-Shift tracking. It
serves also as the first stage of 6-DoF tracking. The method
approximates the posterior density p(µ|I) through M pose
samples µ(i) and weights π(i) (see [16] for detailed description
of particle filtering). Initially, the distribution of samples is set
to the single pose estimation µ̂ = (0, 0, 0, tx, ty, tz) fed from
Mean-Shift tracking. The pose samples are propagated by a
simple stochastic process

µ
(i)
t = µ

(i)
t−1 + w

(i)
t−1 (16)

where w
(i)
t−1 represents white normal process noise

p
(
w

(i)
t−1

)
∼ N(0, Q) with covariance matrix Q. The

p.d.f. (14) is sampled at µ
(i)
t and assigned to the weights π

(i)
t .

Potentially many different informations can be extracted
from the posterior density p(µ|I) but here we are interested
only in a single mode which is the mean pose of the object

E(µ) =
1∑

i π
(i)
t

∑
i

π
(i)
t µ

(i)
t . (17)

At the next iteration the samples µ
(i)
t are resampled with a

probability proportional to the associated weights π
(i)
t . Despite

the loss in frame-rate, we perform several iteration steps of the
particle filter. We consider particle filtering here as a method
for annealed maximisation which is reflected by the absence



of a deterministic component in the dynamic model (16).
Tracking at this stage is performed as long as the p.d.f. at
the mean pose E(µ) is within the interval [θP− , θP+ ].

B. IC-R Tracking

The likelihood of a pose estimation equals p.d.f. (14) as a
function of µ, that is L(µ) = p(I|µ). Maximisation of the
logarithmic likelihood is equivalent to the minimisation µ̂? =
arg minµ̂ O(µ̂) of

O(µ) =
N∑

i=1

[
Ii(µ)− Ti

(
µ0
)]2

, (18)

which is a sum-of-squared differences dissimilarity measure.
Sepp [12] considers rigid-body motion as a composition of
two motions, a global motion estimate µ̂ and a differential
motion δ̂µ. The texture (13) is thus redefined to the function

Ii(δµ) = I(p(m(m(xi, δµ), µ̂))) (19)

of the pose variation δµ. The accordingly modified objective
function (18) is minimized with a Gauss-Newton approxima-
tion to the Hessian by iteratively solving the linear equation
system

N∑
i=1

[∂δµIi]
T [∂δµIi]

∣∣∣
δµ=0,µ̂

δ̂µ = (20)

N∑
i=1

[∂δµIi]
T
∣∣∣
δµ=0,µ̂

[
Ii|δµ=0,µ̂ − Ti|µ0

]
for the pose variation δ̂µ at the initial estimate µ̂ and δµ = 0.
The estimate µ̂? of global motion is updated according to

µ̂? = µ̂◦δ̂µ with m(x, µ̂?) = m
(
m
(
x, δ̂µ

)
, µ̂
)

. (21)

In practice, (20) is expensive since image derivatives have to
be computed for every iteration. By taking advantage of a
relaxed image-constancy assumption in 3-D which reads

I(p(m(m(x, δµ), µ̂))) = T
(
p
(
m
(
x, µ0

)))
(22)

for x ∈ X , the texture Jacobian in (20) simplifies at δµ = 0
to

∂δµIi

∣∣∣
δµ=0,µ̂

= ∂xTi · ∂µm
∣∣∣
µ=0

. (23)

Hence, the image Jacobian and Hessian are constant in this
framework, which is a valid approximation for reasonable
variations from the reference pose (cf. [12]). IC-R tracking
is performed as long as the error O(µ̂?) is below θICR.

V. EVALUATION

We evaluate the hierarchical detection and tracking approach
on two objects: a 1.5l soda bottle with a radius of 4.615cm and
a textured box of size 17.7cm× 12.5cm× 6.5cm (see Fig. 8).
The digital Fire-Wire camera used in the setup has a resolution
of 780 × 580 pixels and a lens aperture of 55◦ × 40◦. Two
distinct kinds of model information are build for each object,
that is a colour histogram and a textured 3-D point cloud.

Fig. 3. Subsampled detection of the bottle by means of the Bhattacharya
coefficients for colour histograms. Top: Detection under different scene
lightness. Bottom: Detection for different poses.

The colour histograms are computed for a selected view on
each object by manually selecting an appropriate image region.
We choose a 8×8×2 discretisation of the hue-saturation-value
(HSV) colour space to build the histogram. Thus the function
h of Sect. III maps to m = 128 colour bins.

The 3-D point clouds for the shape-texture based tracking
approaches are generated by sampling a 83.17◦ segment of a
cylindrical body and a planar 14.7cm × 10.5cm patch of the
box at two resolutions. Low resolution models with 100 points
for the bottle and respectively 192 for the box are used for
particle filtering with 50 samples while high resolution models
with 4624 and respectively 4368 points are generated for IC-
R tracking. The corresponding reference textures are aquired
prior to tracking and manually registered to the geometric
models.

In the following, constant computation time is assessed to
each tracking method where not stated otherwise. In terms of
framrate, Mean-Shift tracking is performed at 8Hz, particle
filtering at 8Hz and IC-R tracking at 25Hz which corresponds
to 1− 12, 75 and 25 iterations respectively for each frame.

The first evaluation concerns the capability of the first
stage in detecting an a-priori known object under variations
of lightness as well as the pose of the object (see Fig. 3).
Detection by means of a colour histogram reveals to be robust
with respect to these variations.

Next, we evaluate the tracking performance of the three
tracking approaches of Sect. III and IV with Monte-Carlo
methods. For the comparison, we off-line registered the camera
to an external optical tracking system based on infrared
retro-reflecting markers with a precision of 1.5mm. Herafter,
the externally measured pose of the object is assumed to
be the ground-truth. Minimisation is analysed with distinct
combinations of initial rotational and translational offsets in
50 images with 30 trials per combination. The direction as
well as the rotational axis are randomly chosen.

The average distance to ground-truth after minimisation
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Fig. 4. Accuracy of minimization with erroneous initial estimates. Upper
left: Translational error for the extended Mean-Shift tracking. Upper right:
Mean squared error for particle filtering (PF) opposed to the IC-R tracking.
Lower: Translational and rotational error for PF opposed to IC-R tracking.

is plotted in Fig. 4. The graphs show a broad range of
convergence for the extended Mean-Shift tracking but also a
relative high error in translation. The particle filter outbeats
the IC-R algorithm in range of convergence but not in terms
of accuracy. It can be deduced that gain in accuracy is affected
by a substantially decreased range of convergence.

The probability of convergence and the speed of conver-
gence of the methods are confronted to each other in Fig. 5
and 6. IC-R tracking shows a narrow range of convergence
with respect to translation while it performs more robustly
for additional rotational error compared to tracking with the
particle filter. The dependence on the number of iterations until
convergence from the translational and the rotational offset is
shown in Fig. 6. Obviously narrow convergence is faster for
the IC-R tracking compared to particle filtering.

Finally, the individual stages are combined to a single visual
servoing application on top of the service-robot of picture
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1. In this scenario, a human carries one of the two objects
towards the robot. The a-priori known object is detected by
the vision system as soon as it becomes visible. Tracking starts
with histogram tracking and as soon as control is passed to
the shape-texture based methods target tool-center-point (tcp)
positions are send to the robotic arm. When the tcp is at a
specific distance then the object is catched by the robotic hand
with a pre-defined grasp.
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Fig. 7. Trajectories of an exemplified visual servoing session. Upper: Desired
and actual absolut position in x,y and z. Bottom: Rotational and translational
error between the desired and actual tool-center-point pose.

The pictures of Fig. 8 show tracking of the box and
successful grasping of the bottle. The trajectories for a single



Fig. 8. Screenshots. Top: Successfully tracked box. Bottom: Successful visual-servoing and grasping of a bottle. The tracked point cloud is outlined.

session are documented in Fig. 7, showing the translation
parameters of the tracked object as well as the distance and
rotational error in position-based servoing by the robot.

VI. SUMMARY AND CONCLUSION

Visual servoing in 6-DoF strongly depends on robustness
and accuracy of object tracking. Previous work addressed this
problem generally by using artificial landmarks. However, as
soon as unaltered real-world objects are used and motion is
not constrained to less than 6-DoF the task becomes more
difficult.

We address the problem employing a hierarchy of tracking
algorithms. In contrast to feature-based algorithms we here
track on a per pixel basis. That is, pixel colour histogram
values drive localization at the beginning while texture values
steer tracking at the final levels.

We assess the probability and range of convergence for each
of the tracking methods on real-data and show successfully the
integration into position-based visual servoing for grasping
moving objects. We attest satisfactory tracking speed and
robust behaviour of object-pose re-initialization.

There is still space for increasing the speed of tracking.
Currently, the trajectory of the moving object is not extrapo-
lated which would give a better estimate for the pose at the
following time instant. Moreover, the number of 3-d model
points involved at the highest level can be reduced enabling
tracking at a framerate of 50Hz.
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