

1.1. Submanifolds of Euclidean Space

 general we shall talk about the more familiar (and less abstract) concept of a submanifold of ordered N tuples $\left(x^{1}, \ldots, x^{N}\right)$ of real numbers. Before discussing manifolds in The most familiar manifold is N-dimensional euclidean space \mathbb{R}^{N}, that is, the space \mathbb{R}^{3} demands special care when curvilinear coordinates are required. the same facility as in euclidean space. It should be recalled, though, that calculus in most general space in which one can use differential and integral calculus with roughly be covered by a family of local coordinate systems. A manifold will turn out to be theWe shall soon define a "manifold" to be a space that, like the surface of the Earth, can the polar maps. maps we can study the entire surface, provided we know how to relate the Mercator to sets of "polar" projections to study the Arctic and Antarctic regions. With these three surface. Precise definitions will be given in Section 1.2.) Of course we may use two such coordinates as being "local," even though they might cover a huge portion of the that is, that they are not defined everywhere; they are not "global." (We shall refer to polar regions, vividly informs us that these coordinates are badly behaved at the poles latitude and longitude. The familiar Mercator's projection, with its stretching of the longitude serve as "coordmates," allowing us to use calculus by considering functions
on the Earth's surface (temperature, height above sea level, etc.) as being functions of surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and and cartography, for example, are devoted to the study of the most familiar curved \mathbb{R}^{n}, but it is necessary to apply calculus to problems involving "curved" spaces. Geodesy As students we learn differential and integral calculus in the context of euclidean space

Manifolds and Vector Fields

II MOH.WVHD

In Figure 1.1 we have drawn a portion of the submanifold M. This M is the graph
In \quad Figure 1.1
of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, that is, $M=\left\{(\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid y=f(\mathbf{x})\right\}$. When $n=1$,
M is a curve; while if $n=2$, it is a surface.
ii) The unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3}. Points in the northern hemisphere can be
described by $z=F(x, y)=\left(1-x^{2}-y^{2}\right)^{1 / 2}$ and this function is differentiable
everywhere except at the equator $x^{2}+y^{2}=1$. Thus x and y are local coordinates for
the northern hemisphere except at the equator. For points on the equator one can solve
for x or y in terms of the others. If we have solved for x then y and z are the two local
coordinates. For points in the southern hemisphere one can use the negative square
 has rank r. Then the equations $F^{\alpha}=c^{\alpha}$ define an n-dimensional submanifold of T^{n+} $\left(\frac{{ }^{x} e}{x y e}\right)$
Jacobian matrix \quad. Suppose that at each point x_{0} of the locus the $\left.x^{n+r}\right)$. Consider the locus $F^{\alpha}(x)=c^{\alpha}$. Suppose that at each point x of the locus the
 tion theorem confirms this. The (nontrivial) proof of the implicit function theorem we might indeed be able to solve for the y 's in terms of the x 's, and is nonzero then whether it is up or down.) This suggests that if the indicated Jacobian is nonzero thex the convention that for matrix indices, the index to the left always is the shall use $\left([\partial F / \partial y]^{-1}\right)^{\beta}{ }_{\alpha}$ is the $\beta \alpha$ entry of the inverse to $\left.y^{1}, \ldots, y^{r}\right)$ is not zero. (Here provided the subdeterminant $\partial\left(F^{1}, \ldots, F^{r}\right) / \partial\left(y^{1}, \ldots, y^{r}\right)$ is not

and
locally, near $\left(x_{0}, y_{0}\right)$, we may solve $F^{\alpha}(x, y)=c^{\alpha}, \alpha=1, \ldots, r$, for the y 's in terms

of the x 's at $\left(x_{0}, y_{0}\right) \in M$ of the locus is not 0 , the implicit function theorem assures us that $(0 \Omega \cdot 0 x)\left[\frac{\left({ }_{A} \mathcal{A} \cdot \cdots \cdot \mathcal{T}\right) \varrho}{(A \cdot \cdots \cdot A) \varrho}\right]$ $$
F^{\alpha}(x, y)=c^{\alpha}, \quad\left(c^{1}, \ldots, c^{r}\right) \text { constants }
$$

If the Jacobian determinant

 root for z. The unit sphere in \mathbb{R}^{3} is a 2 -dimensional submanifold of \mathbb{R}^{3}. We note that we root for z. The unit sphere in \mathbb{R}^{3} is a dime .

 $F(x, y):=y^{2}=0$. Both partial derivatives vanish on the locus, the x axis, and our
criteria would not allow us to say that the x axis is a The x axis of the $x y$ plane \mathbb{R}^{2} can be described (perversely) as the locus of the quadratic A submanifold of dimension $(N-1)$ in \mathbb{R}^{N}, that is, of "codimension" 1 , is called
a hypersurface. then locally we can solve for $z=z(x, y)$ gradient vector has a nontrivial component in the z direction at a point of $F=0$ is orthogonal to the locus $F=0$, and we may conclude, for example, that if this $\left.\begin{array}{c}\frac{2 e}{d e} \\ \frac{c e}{d e} \\ \frac{x e}{d e}\end{array}\right]$ matrix is called in calculus the gradient vector of F. In \mathbb{R}^{3} this vector $F(x, y, z)=x^{2}+y^{2}+z^{2}=1$ of Example (ii). The column version of this row fold of \mathbb{R}^{N}. This criterion is easily verified, for example, in the case of the 2 -sphere and we may conclude that this locus is indeed an $(N-1)$-dimensional submani

 24 anbly

Let \mathbf{v} be a tangent vector to \mathbb{R}^{n} at x_{0}. Take any smooth curve $x(t)$ such that $x(0)=x_{0}$
and $\dot{x}(0):=(d x / d t)(0)=\mathbf{v}$, for example, the straight line $x(t)=x_{0}+t \mathbf{v}$. The image
of this curve

$$
y(t)=F(x(t))
$$

has a tangent vector \mathbf{w} at y_{0} given by the chain rule

$$
w^{\alpha}=\dot{y}^{\alpha}(0)=\sum_{i=1}^{n}\left(\frac{\partial y^{\alpha}}{\partial x^{i}}\right)\left(x_{0}\right) \dot{x}^{i}(0)=\sum_{i=1}^{n}\left(\frac{\partial y^{\alpha}}{\partial x^{i}}\right)\left(x_{0}\right) v^{i}
$$

The assignment $\mathbf{v} \mapsto \mathbf{w}$ is, from this expression, independent of the curve $x(t)$ chosen,
and defines a linear transformation, the differential of F at x_{0}

$$
F_{*}: \mathbb{R}_{x_{0}}^{n} \rightarrow \mathbb{R}_{y_{0}}^{r} \quad F_{*}(\mathbf{v})=\mathbf{w}
$$

$\varepsilon \%$ a.nn!y

 $(x)_{p} d={ }_{n} K$ use the chain rule in the argument to follow.) In coordinates, F is described by giving
r functions of n variables in the present context. For example, if F is once continuously differentiable, we may
use the chain rule in the argument to follow.) In coordinates, F is described by giving
 $\mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ be a smooth map. ("Smooth" ordinarily means infinitely differentiable. For Let x^{1}, \ldots, x^{n} and y^{1}, \ldots, y^{r} be coordinates for \mathbb{R}^{n} and \mathbb{R}^{r} respectively. Let F; space of all vectors in \mathbb{R}^{n} based at x (i.e., it is a copy of \mathbb{R}^{n}, with origin shifted to x). The tangent space to \mathbb{R}^{n} at the point x, written here as \mathbb{R}_{x}^{n}, is by definition the vector
1.1b. The Geometry of Jacobian Matrices: The "Differential"

Theorem (1.2): Let $F: \mathbb{R}^{r+n} \rightarrow \mathbb{R}^{r}$ and suppose that the locus

$$
F^{-1}\left(y_{0}\right):=\left\{x \in \mathbb{R}^{r+n} \mid F(x)=y_{0}\right\}
$$

is not empty. Suppose further that for all $x_{0} \in F^{-1}\left(y_{0}\right)$

$$
F_{*}: \mathbb{R}_{x_{0}}^{n+r} \rightarrow \mathbb{R}_{y_{0}}^{r}
$$

is onto. Then $F^{-1}\left(y_{0}\right)$ is an n-dimensional submanifold of $\mathbb{R}^{n+r .}$
the statement that the differential
The main theorem is a geometric interpretation of what we have discussed. Note that
the statement " F has rank r at x_{0}," that is, $\left[\partial y^{\alpha} / \partial x^{i}\right]\left(x_{0}\right)$ has rank r, is geometrically
1.1c. The Main Theorem on Submanifolds of \mathbb{R}^{N}
$\mathbb{R}_{x_{0}}^{9} \rightarrow$ Sym 6 is onto.
$O(3)$ is then the locus $F^{-1}(0)$. Let $x_{0} \in F^{-1}(0)=O(3)$. We shall show that F_{*}
 \mathbb{R}^{9}; that is, it can be considered as a copy of \mathbb{R}^{6}. To exhibit $O(3)$ as a locus in \mathbb{R}^{9}, we
consider the map equations $x_{i k}-x_{k i}=0, i \neq k$, we see that Sym^{6} is a 6 -dimensional linear subspace of

$$
\left\{x={ }_{L} x \mid(\varepsilon \times \varepsilon) W \ni x\right\}={ }_{9} \mathrm{u} / \mathrm{S}
$$

 Note first that since $x^{T} x$ is a symmetric matrix, equation (i, k) is the same as equation that $O(3)$ is a submanifold, and we turn now to the proof of this crucial result.

 that this path is a very special one, a "geodesic" on the submanifold $O(3)$, and this in $O(3)$ is a submanifold, we shall see, in Section 10.2 c from the principle of least action, As time t evolves, the point $x(t)$ traces out a curve on this 3-dimensional locus. Since \mathbb{R}^{9}. We shall see shortly that this locus is in fact a 3-dimensional submanifold of \mathbb{R}^{9}. represented by a point $x(t)$ in \mathbb{R}^{9}, but in fact the point $x(t)$ lies on the locus $\mathrm{O}(3)$ in

We then have the following situation. The configuration of the body at time t can be

$$
\frac{I=!}{6}
$$

$$
\left(y^{\prime} ?\right)
$$

by the equations $x^{T} x=I$, that is, by the system of nine quadratic equations (i, k) $M(3 \times 3)$, is the euclidean space \mathbb{R}^{9}. The group $O(3)$ is then the locus in this \mathbb{R}^{9} defined $x_{11}, x_{12}, \ldots, x_{33}$ to any matrix x, we see that the space of all 3×3 real matrices full ortlogonal group, $O(3)$.) By assigning (in some fixed order) the nine coordinates where T denotes transpose. (If we omit the determinant condition, the group is the

$$
0<x 1 \partial \mathrm{p} \text { pue } \quad \mathrm{I}^{-x}=L^{x}
$$

 right-handed system fixed in the body with that of \mathbb{R}^{3} we see that the configuration or Assume a rigid body has one point, the origin of \mathbb{R}^{3}, fixed. By comparing a cartesian

1.1d. A Nontrivial Example: The Configuration Space

global coordinate for the submanifold $x^{1}=y_{0}^{1}, x^{2}=y_{0}^{2}$, that is, the vertical line.

$$
\text { group } \mathrm{SO}(3), \text { that is, the } 3 \times 3 \text { real matrices } x=\left(x_{i j}\right) \text { such that }
$$

イроя р!̣iry e јо

The best example to keep in mind is the linear "projection" $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,

 function of the coordinates $x_{i k}$) and consequently the two subsets of $\mathrm{O}(3)$ where de
that sends each matrix x into its determinant is continuous (it is a cubic polynomial

$\mathbb{I I} \leftarrow{ }_{6} \mathbb{\#}: 10 \mathrm{P}$

+1 . The mapping
terminant ± 1, whereas $\mathrm{SO}(3)$ consists of those orthogonal matrices with determinan
What about the subset $\mathrm{SO}(3)$ of $\mathrm{O}(3)$? Recall that each orthogonal matrix has deis a $(9-6)=3$-dimensional submanifold of \mathbb{R}^{9} product $\mathbf{v}=\dot{x}=x_{0} \mathbf{w} / 2$. Thus F_{*} is onto at x_{0} and by our main theorem $\mathrm{O}(3)=F^{-1}(0)$ equation $x_{0}^{T} \dot{x}(0)=\mathbf{w} / 2$. Since $x_{0} \in \mathrm{O}(3), x_{0}^{T}=x_{0}^{-1}$ and we

We wish this quantity to be w. You should verify that it is sufficient to satisfy the matrix (0) $x_{L}^{0} x+0 x_{L}(0) x=0=t[((7) x) A] \frac{p}{p}$
$-(i) x_{L}(f) x=((f) x)_{d}$

matrices such that $x(0)=x_{0}$; its tangent vector at x_{0} is $\dot{x}(0)$. The image curve origin of \mathbb{R} with $1 t s$ endpoint. Then w is itself a symmetric matrix. We must find v, a
langent vector to \mathbb{R}^{9} at x_{0}, such that $F_{*} v=w$. Consider a general curve $x=x(t)$ of Let w be tangent to Sym 6 at the zero matrix. As usual, we identify a vector at the

q. 1 eun6!

$\left\{\ni>\left.\|\boldsymbol{e}-\mathbf{x}\|\right|_{u \mathbb{Z}} \boldsymbol{Z} \boldsymbol{x}\right\}=(\ni)^{\mathfrak{r}} \boldsymbol{g}$

 one approaches a new language, with some measure of fluency, it is hoped, coming later ogy are helpful. The reader for whom these notions are new should approach them as stage, than concern for topological details, but some basic notions from point set topol-
The cultivation of an intuitive "feeling" for manifolds is of more importance, at this

SpIOJ!Uと ${ }^{\circ}{ }^{\circ}{ }^{\circ}$ I

$$
\text { then } x \text { can be used as local coordinate for this curve. }
$$ component in the x direction at a point of the intersection of $F=0$ and $G=0$, Show, in \mathbb{R}^{3}, that if the cross product of the gradients of F and G has a nontrivial (b) 1.4 - ן!!ue

$$
\{1=x \neq р \mid x \text { seоиеш ןедл } u \times u\}=:(u) \text { is }
$$

1.1(1) Investigate the locus $x^{2}+y^{2}-z^{2}=c$ in \mathbb{R}^{3}, for $c>0, c=0$, and $c<0$. Are
they submanifolds? What if the origin is omitted? Draw all three loci, for $c=1$,
$0,-1$, in one picture.
1.1(2) $\mathrm{SO}(n)$ is defined to be the set of all orthogonal $n \times n$ matrices x with det $x=1$.
The preceding discussion of $\mathrm{SO}(3)$ extends immediately to $\mathrm{SO}(n)$. What is the
dimension of $\mathrm{SO}(n)$ and in what euclidean space is it a submanifold?
1.1(3) Is the special linear group

suopgodd

 $\{x \in M \mid F(x) \in V\}$ is open in M. (This reduces to the usual ϵ, δ definition in the case say that F is continuous if for every open set $V \subset N$, the inverse image $F^{-1} V:=$ If $F: M \rightarrow N$ is a map of a topological space M into a topological space N, we Any open set in M that contains a point $x \in M$ will be called a neighborhood of x sןearıu! чəns jo uo!un e əq II! open set in the induced topology on the line A. It can be shown that any open set in A intersect A in an "interval" that does not contain its endpoints. This interval will be an ball in \mathbb{R}^{2} is simply a disc without its edge. This disc either will not intersect A or will sets $d o$ define a topology for A. For example, let A be a line in the plane \mathbb{R}^{2}. An open provided V is the intersection of A with some open subset U of $M, V=A \cap U$. These (the induced or subspace topology) by declaring $V \subset A$ to be an open subset of A Let A be any subset of a topological space M. Define a topology for the space A discussing \mathbb{R}^{n} in this book we shall always use the usual topology
A subset of M is closed if its complement is open. topology on \mathbb{R}^{n} is the discrete topology, in which every subset of \mathbb{R}^{n} is declared open! These define the topology of \mathbb{R}^{n}, the "usual" topology. An example of a "perverse" discussion of open balls in \mathbb{R}^{n} we also defined the collection of open subsets of \mathbb{R}^{n}, that satisfies 1,2 , and 3 is eligible for defining a topology in M. In our introductory

> 2. If U and V are open sets, then so is their intersection $U \cap V$
> 3. The union of any collection of open sets is open.

A topological space is a set M with a distinguished collection of subsets, to be called
the open sets. These open sets must satisfy the following. set axiomatically.
we mean by an open set in a more general space? We shall define the notion of open We have described explicitly the "usual" open sets in euclidean space \mathbb{R}^{n}. What do is not difficult to see that the intersection of any finite number of open sets in \mathbb{R}^{n} is open space \mathbb{R}^{n} is both open and closed, since its complement is empty check that each $\bar{B}_{\mathbf{a}}(\epsilon)$ is a closed set, whereas the open ball is not. Note that the entire A set F in \mathbb{R}^{n} is declared closed if its complement $\mathbb{R}^{n}-F$ is open. It is easy to itself is trivially open. The empty set is technically open since there are no points \mathbf{a} in it $/ 2$), whereas $B_{\mathrm{b}}(\epsilon)$ is not open because
A set U in \mathbb{R}^{n} is declared open if given any $\mathbf{a} \in U$ there is an open ball of some radius
that is, the closed ball is the open ball with its edge or boundary included
$\left({ }_{u} x \cdot \cdots \cdot{ }_{1} x\right){ }_{1}^{n A}=(d){ }_{1} x$ patches will have its two sets of coordinates related differentiably U and coordinates x_{U} in U, such that a point $p \in U \cap V$ that lies in two coordinate (curvilinear) coordinate systems $\left\{U ; x_{U}^{1}, \ldots, x_{U}^{n}\right\}$, consisting of open sets or "patches" space that is locally \mathbb{R}^{n} in the following sense. It is covered by a family of loca An n-dimensional (differentiable) manifold M^{n} (briefly, an n-manifold) is a topological

PROOF: $F(G)$ is a compact subspace of \mathbb{R}, and thus is closed and bounded.

open subcover $\left\{f^{-1}\left(U_{\alpha}\right)\right\}$ of G, and then $\left\{U_{\alpha}\right\}$ is a finite subcover of $f(G)$. $\quad \square$ then $\left\{f^{-1}\left(U_{i}\right)\right\}$ is an open cover of G. Since G is compact we can extract a finite Proof: If $f: G \rightarrow M$ is continuous and if $\left\{U_{i}\right\}$ is an open cover of $f(G) \subset M$,

Finally we shall need two properties of continuous maps. First

2. X is a bounded subset, that is, $\|\mathbb{X}\|<$ some number c, for all $\mathbb{x} \in X$

 if and only if every topology book that any subset X of \mathbb{R}^{n} (with the induced topology) is compact On the other hand, the closed interval $[0,1]$ is a compact space. In fact, it is shown in ering from the open covering given by the sets $U_{n}=\{x \mid 1 / n<x<1\} n=1,2, \ldots$ $(0,1)$, considered as a subspace of \mathbb{R}, is not compact; we cannot extract a finite subcovcan pick out a finite number of the sets that still covers X. For example, the open interval efinition of a manifold; the reader may prefer to come back to this later on when needed. There is one more concept that plays a very important role, though not needed for the concerning point set topology explicitly in the remainder of the book. The reader is referred to [S] for questions The technical definition of a manifold requires two more concepts, namely "Haus-dorff" and "countable base." We shall not discuss these here since they will not arise \mathbb{R}^{n} and \mathbb{R}^{m} are homeomorphic if and only if $m=n$. topological spaces; we say that they are "topologically the same." It can be proved that open (closed) sets. Homeomorphic spaces are to be considered to be "the same" as and that M and N are homeomorphic. A homeomorphism takes open (closed) sets into exists. If further both F and F^{-1} are continuous, we say that F is a homeomorphism
If $F: M \rightarrow N$ is one to one $(1: 1)$ and onto, then the inverse $\operatorname{map} F^{-1}: N \rightarrow M$

[^0]MANIFOLDS AND VECTOR FIELDS
in a pair of antipodal points; $\mathbb{R} P^{2}$ is topologically S^{2} with antipodal points identified.
 would have been the sphere S^{2}, since each directed line \vec{L} could be uniquely defined Note that if we had been considering directed lines, then the manifold in question can, in general, only be done locally, by means of the manifold's local coordinates. describing a particular line L by coordinates, that is, pairs of numbers (u, v), then this of $\mathbb{R} P^{2}$ is an entire line in \mathbb{R}^{3} and $\mathbb{R} P^{2}$ is a global object. If, however, one insists on of some set of objects. $\mathbb{R} P^{2}$ is the set of undirected lines through the origin; each point by means of a manifold, $M^{2}=\mathbb{R} P^{2}$. A manifold is a generalized parameterization We have suceeded in "parameterizing" the set of undirected lines through the origin
must identify $[x, y, z]$ with $[\lambda x, \lambda y, \lambda z]$ for all $\lambda \neq 0$. They are not true coordinates
in our sense. triple $[x, y, z]$, called the homogeneous coordinates of the point in $\mathbb{R} P^{2}$ where we a point other than the origin that lies on this line. We may represent this line by the
Consider a point in $\mathbb{R} P^{2} ;$ it represents a line through the origin 0 . Let (x, y, z) be the plane $z=1$ coordinates u_{1} and u_{2} are simply the $x y$ coordinates of the point where L intersects
 these patches make $\mathbb{R} P^{2}$ into a 2 -dimensional manifold Do likewise for the other two patches. In Problem 1.2(1) you are asked to show that $\frac{z}{\kappa}=r_{n} \quad \frac{z}{x}=1 n$
other than the origin and define (since $z \neq 0$)
Introduce coordinates in the U_{z} patch; if $L \in U_{z}$, choose any point (x, y, z) on L

really use the ratios of coordinates to describe a line. We proceed as follows.
We cover $\mathbb{R} P^{2}$ by three sets:

 4.1 2m6!

7
$\stackrel{\pi}{0}$
$\stackrel{\rightharpoonup}{6}$
$\stackrel{\rightharpoonup}{\omega}$
$\stackrel{\rightharpoonup}{\omega}$

E

 rotation through an angle θ (in radians) about an axis descibed by the unit vector \mathbf{r}. follows. Use the "right-hand rule" to associate the endpoint of the vector $\theta \mathbf{r}$ to the 3-dimensional submanifold of \mathbb{R}^{9}. A convenient topological model is constructed as of $S^{2} \subset \mathbb{R}^{3}$ in Example (ii). In 1.1 d we showed that the rotation group $\mathrm{SO}(3)$ is a It is a fact that every submanifold of \mathbb{R}^{n} is a manifold. We verified this in the case points on the boundary unit $(n-1)$ sphere identified. identified, and this in turn is the solid n-dimensional unit ball in \mathbb{R}^{n} with antipoda Similarly, $\mathbb{R} P^{n}$ is topologically the unit n sphere S^{n} in \mathbb{R}^{n+1} with antipodal points disc in the plane with antipodal points on the unit circle identified. We may then project this onto the disc in the plane. Topologically $\mathbb{R} p^{2}$ is the unit ern hemisphere, the equator, and with antipodal points only on the equator identified hemisphere (exclusive of the equator) of redundant points, leaving us with the north

served; in the rigorous definition of manifold, to be given shortly, there is no mention
of metric notions such as distance or area or angle. of our procedure. Also it will be clear that certain natural "distances" will not be preby nearby points in the model, but we won't be concerned with the differentiability
 certain spaces we shall meet as projective spaces. Our model will respect the topol

SL゙เ อun6!

$$
\begin{aligned}
& \text { where each subset } U \text { is in } 1: 1 \text { correspondence } \phi_{U}: U \rightarrow \mathbb{R}^{n} \text { with an open subset } \\
& \phi_{U}(U) \text { of } \mathbb{R}^{n} \text {. }
\end{aligned}
$$

pomueln e jo uoniuya

 as the upper, we conclude that if we take a-disc and sew its edge to the single edge of dimensional disc with a circular edge C^{\prime}. If we observe that the lower cap is the same edge of this full band in $\mathbb{R} P^{2}$. Note that the indicated "cap" is topologically a 2

blt enn

identified, and (ii) that this half band is the same as the full band. The edge of the
 and is therefore a 2 -manifold. You should verify (i) that the Möbius band sits naturally

as local coordinates in $\mathbb{R} P^{2}$, and then our map is given by the two smooth functions
$u=f(x, y, z)=x / z$ and $v=g(x, y, z)=y / z$.
At a point of \mathbb{R}^{3} where, for example, $z \neq 0$ we may use $u=x / z$ and $v=y / z$

$$
[z ' \mathcal{R} \cdot x] \leftarrow\left(z{ }^{\prime} \mathcal{R} \cdot x\right)
$$

homogeneous coordinates we may define a map $\left(\mathbb{R}^{3}-0\right) \rightarrow \mathbb{R} P^{2}$ by
Consider the real projective plane $\mathbb{R} P^{2}$, Example (vi) of Section 1.2b. In terms of function $F(x)$ of any local coordinates. replacing F by its composition $F \circ \phi_{U}^{-1}$, thinking of F as directly expressible as a Similarly with a manifold. With this understood, we shall usually omit the process of expressed in terms of latitude and longitude, at least if we are away from the poles. Earth's surface is continuous or differentiable if it is continuous or differentiable when as we see lines of latitude and longitude engraved on our globes. A function on the speaking, we envision the coordinates x as being engraved on the manifold M, just portion $\phi_{U}(U)$ of \mathbb{R}^{n}, and we are asking that this function be differentiable. Briefly (recall that ϕ_{U} is assumed $1: 1$) we obtain a real-valued function F_{U} defined on a ${ }_{1}^{n_{\phi}} \circ_{d}=: n_{d}$
means that that when we compose F with the inverse of the coordinate map ϕ_{U} $F=F_{U}\left(x^{1}, \ldots, x^{n}\right)$ is a differentiable function of the coordinates x. Technically this F is differentiable if, when we express F in terms of a local coordinate system (U, x), logical space we know from 1.2 a what it means to say that F is continuous. We say that
Let $F: M^{n} \rightarrow \mathbb{R}$ be a real-valued function on the manifold M. Since M is a topoanalytic manifold is one whose overlap functions are analytic, that is, expandable in
power series. overlap maps $f_{V U}$ are of class C^{k}. Likewise we have the notion of a C^{∞} manifold. An
analytic manifold is one whose overlap functions are analytic, that is, expandable in class C^{∞} if it is of class C^{k} for all k. We say that a manifold M^{n} is of class C^{k} if its $\operatorname{map} F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is of class C^{k} if all $k^{\text {hh }}$ partial derivatives are continuous. It is of conditions) we say that M is an n-dimensional differentiable manifold. We say that a topology for M is Hausdorff and has a countable base (see [S] for these technical any $p \in W$ there is a coordinate chart U, ϕ_{U} such that $p \in U \subset W$. If the resulting topology in the set M by declaring a subset W of M to be open provided that given Take now a maximal atlas of such coordinate patches; see Example (iv). Define a we shall call ϕ_{U} a coordinate map. $p \in U \subset M$ we may assign the n coordinates of the point $\phi_{U}(p)$ in \mathbb{R}^{n}. For this reason \mathbb{R}^{n} to \mathbb{R}^{n} to be differentiable). Each pair U, ϕ_{U} defines a coordinate patch on M; to

$$
f_{V U}=\phi_{V} \circ \phi_{U}^{-1}: \phi_{U}(U \cap V) \rightarrow \mathbb{R}^{n}
$$

that is,

[^1]

the 2 -sphere S^{2}. We do this by means of stereographic projection, as follows. functions at " ∞ " we introduce a point at ∞, to form a new manifold that is topologically

 complex manifold, although its topological dimension is $2 n$ proceed as in the real case in 2.3 c . The resulting manifold is called an n-dimensional
 equations with respect to each pair (x^{r}, y^{r}). Briefly speaking, each w^{k} can be expressed where $z^{k}=x^{k}+i y^{k}$ and $w^{k}=u^{k}+i v^{k}$, then u^{k} and v^{k} satisfy the Cauchy-Riemann sets in \mathbb{C}^{n} be complex analytic; thus if we write $f_{V U}$ in the form $w^{k}=w^{k}\left(z^{1}, \ldots, z^{n}\right)$ complex n-space \mathbb{C}^{n}. We then require that the overlap maps $f_{i V U}$ mapping sets in \mathbb{C}^{n} into

әәчм $\cdots \cdots \cap \cap \Omega=W$ виџәлоэ в ч!
1.2d. Complex Manifolds: The Riemann Sphere

Riemann sphere! of these two patches we have $w=1 / z$. Thus $\mathbb{C} P^{1}$ is nothing other than the coordinate is $w=z_{1} / z_{0}$. These two patches cover $\mathbb{C} P^{1}$ and in the intersection the U_{1} coordinate of the point $\left[z_{0}, z_{1}\right]$ is $z=z_{0} / z_{1}$, whereas if $z_{0} \neq 0$ the U_{0} Note that $\mathbb{C} P^{1}$ has complex dimension 1 , that is, real dimension 2. For $z_{1} \neq 0$ U_{p} coordinates $z_{0} / z_{p}, z_{1} / z_{p}, \ldots, z_{n} / z_{p}$, with z_{p} / z_{p} omitted. point in $\mathbb{C} P^{n} ;$ thus $\left[z_{0}, z_{1}, \ldots, z_{n}\right]=\left[\mu z_{0}, \mu z_{1}, \ldots, \mu z_{n}\right]$ for all $\mu \in(\mathbb{C}-0)$.
$z_{p} \neq 0$ on this line, we may associate to this point $\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ its n complex We call $\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ the homogeneous coordinates of this line, that is, of thi the line consisting of all complex multiples $\lambda\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ of this point, $\lambda \in \mathbb{C}$ through the origin of \mathbb{C}^{n+1}. To a point $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ in $\left(\mathbb{C}^{n+1}-0\right)$ we associate
 (c) $\overbrace{}^{*}$

1.2(2) Give a coordinate covering for $\mathbb{R} P^{3}$, pick a pair of patches, and show that the -suoll
1.2(1) Show that $\mathbb{R}^{P^{2}}$ is a differentiable 2-manifold by looking at the transition func

Problems

Note that the two sets of real coordinates (x, y) and (u, v) make S^{2} into a real analytic
manifold. Riemann sphere. The point $w=0$ (the south pole) represents the point $z=\infty$ that
was missing from the original complex plane \mathbb{C}. in the overlap $U \cap V$, we may consider S^{2} as a 1 -dimensional complex manifold, the gives the relation between the two sets of coordinates. Since this is complex analytic $z=(z) R A f=m$
$\frac{1}{z}$ that $|w|=1 /|z|$, and consequently plane holding the two poles and the point p, one reads off from elementary geometry and $w=|w| e^{-i \theta}$. From the bottom of the figure, which depicts the planar section in the way we assign to any point p other than the poles two complex coordinates, $z=|z| e^{i \theta}$ and V from the south and north poles, respectively, onto the z and the w planes. In this the points other than the north pole, let ϕ_{U} and ϕ_{V} be stereographic projections of U

Let U be the subset of S^{2} consisting of all points except for the south pole, let V be will be discussed in Section 2.8) two tangent planes to agree with the usual orientation of S^{2} (questions of orientation

 also lies in the coordinate patch $\left(V, x_{V}\right)$, then this same velocity vector is described
by another n-tuple $\left.\left.d x_{V}^{1} / d t\right]_{0}, \ldots, d x_{V}^{N} / d t\right]_{0}$, related to the first set by the chain rule classically described by the n-tuple of real numbers $\left.\left.d x_{U}^{1} / d t\right]_{0}, \ldots, d x_{U}^{n} / d t\right]_{0}$. If p_{0}
also lies in the coordinate patch $\left(V, x_{V}\right)$, then this same velocity vector is described $x_{U}^{i}=x_{U}^{i}(t)$, which will be assumed differentiable. The "velocity vector" $\dot{p}(0)$ was system $\left(U, x_{U}\right)$ about the point $p_{0}=p(0)$ the curve will be described by n functions the manifold M^{n}; thus p is a map of some interval on \mathbb{R} into M^{n}. In a coordinate We motivate the definition of vector as follows. Let $p=p(t)$ be a curve lying on

these authors deal only with manifolds that are given as subsets of some euclidean space. A good reference for manifolds is $[G, P]$. The reader should be aware, however, that be concerned with submanifolds rather than manifolds. use an embedding for purposes of visualization, and in fact most of our examples will that is, independent of the use of an embedding. Nevertheless, we shall not hesitate to that M^{n} can be embedded in \mathbb{R}^{N}, and we shall try to give definitions that are "intrinsic," in \mathbb{R}^{4}. It is surprising, however, that for many purposes it is of little help to use the fact (recall that we had a difficulty with sewing in 1.2 b , Example (vii)), it can be embedded be realized as a submanifold of $\mathbb{R}^{2 n}$. Thus although we cannot "embed" $\mathbb{R} P^{2}$ in \mathbb{R}^{3} contributors to manifold theory in the twentieth century, has shown that every M^{n} can as a submanifold of some \mathbb{R}^{N}. In fact, Hassler Whitney, one of the most important for it can be shown (though it is not elementary) that every manifold can be realized that we understand tangent vectors to submanifolds is a powerful psychological tool, coincide with the previous notion in the case that M^{n} is a submanifold of \mathbb{R}^{N}. The fact define what we mean by a tangent vector to an abstract manifold. This definition will of \mathbb{R}^{3} we would associate a point of \mathbb{R}^{3} to each point of $\mathbb{R} P^{2}$. We will be forced to origin of \mathbb{R}^{3}, that is, a point in $\mathbb{R} P^{2}$ is an entire line in \mathbb{R}^{3}; if $\mathbb{R} P^{2}$ were a submanifold For example, the projective plane $\mathbb{R} P^{2}$ was defined to be the space of lines through the the previous section, is a rather abstract object that need not be given as a subset of \mathbb{R}^{N} curve $x=x(t)$ of \mathbb{R}^{N} that lies on M^{n}. On the other hand, a manifold M^{n}, as defined in
the same meaning in all coordinate systems.

 $$
X_{p}(f):=D_{\mathbf{X}}(f):=\sum_{j}\left[\frac{\partial f}{\partial x^{j}}\right](p) X^{j}
$$

This seems to depend on the coordinates used, although it sho
(1.8) that this is not the case in \mathbb{R}^{n}. We must show that (1.9) def
independent of the local coordinates used. Let $\left(U, x_{U}\right)$ and (V
systems. From the chain rule we see
with the function $f \circ \phi_{U}^{-1}$ where ϕ_{U} is a coordinate map.) If X is a vector at p we defin
the derivative of f with respect to the vector X by

This is the motivation for a similar operation on functions on any manifold M. A real $a(d)\left[\frac{r_{0} e}{f \rho}\right] \stackrel{!}{\zeta}$

$0=[(\mathbf{\Lambda}+d) f] \frac{p}{p}=(f)^{\wedge} \square$

f with respect to a vector at the point p In euclidean space an important role is played by the notion of differentiating a function

even though it conflicts with the modern mathematical terminology of "categories and
functors." The term contravariant is traditional and is used throughout physics, and we shall use i
point in question.
where the transition function $c_{V U}$ is the $n \times n$ Jacobian matrix evaluated at the
$X_{V}=c_{V U} X_{U}$

If we let $X_{U}=\left(X_{U}^{1}, \ldots, X_{U}^{n}\right)^{T}$ be the column of vector "components" of \mathbf{X}, we
MANIFOLDS AND VECTOR FIELDS
 where the components X^{j} are differentiable functions of (x). In particular, each $\partial / \partial x$

$\frac{{ }^{x} Q}{Q}(x)_{!} \times T=X$

A vector field on an open set U will be the differentiable assignment of a vector \mathbf{X}
${ }^{N}$ that is "tangent" to M^{n} at p, and this is the picture to keep in mind.
If M^{n} is a submanifold of \mathbb{R}^{N}, then M_{p}^{n} is the usual n-dimensional affine subspace of
form a basis of this n-dimensional vector space (as is evident from (1.10)) and
this basis is called a coordinate basis or coordinate frame.

$\frac{{ }^{x} e}{e}$
 $\frac{u^{x} \Theta}{e}$

Definition: The tangent space to M^{n} at the point $p \in M^{n}$, written M_{p}^{n}, is the
real vector space consisting of all tangent vectors to M^{n} at p. If (x) is a coordinate
system holding p, then the n vectors n-tuples, is again a vector at that point, and that the product of a vector by a scalar, that
is, a real number, is again a vector. It is evident from (1.6) that the sum of two vectors at a point, defined in terms of their

A familiar example will be given in the next section
$\left.\frac{\rho^{x} \varphi}{x \varphi}\right)=\frac{\rho^{x} \varphi}{x \varphi}=\frac{r^{x} \varphi}{\theta}$
as $\partial \mathbf{r} / \partial x^{j}$,
is the usual position vector from the origin, then $\partial / \partial x^{j}$ would be written classically the $j^{\text {th }}$ coordinate curve parameterized by x^{j} ! If $M^{n} \subset \mathbb{R}^{N}$, and if $\mathbb{r}^{*}=\left(y^{1}, \ldots, y^{N}\right)^{T}$ components $d x^{i} / d t=\delta_{\alpha}^{i}$. The $j^{\text {th }}$ coordinate vector $\partial / \partial x^{j}$ is the velocity vector to for $i \neq \alpha$ and $x^{\alpha}(t)=t$. The velocity vector for this curve at parameter value t has point, the curve being parameterized by x^{α}. This curve is described by $x^{i}(t)=$ constant if $i=\alpha$ and 0 if $i \neq \alpha$). On the other hand, consider the $\alpha^{\text {th }}$ coordinate curve through a The $i^{\text {th }}$ component of $\partial / \partial x^{\alpha}$ is, from (1.9), given by δ_{α}^{i} (where the Kronecker δ_{α}^{i} is 1 vector and its associated differential operator. Each one of the n operators $\partial / \partial x^{i}$ then
defines a vector, written $\partial / \partial x^{i}$, at each p in the coordinate patch. in a local coordinate system (x). From now on, we shall make no distinction between a

$\left.\mathbf{X}_{p}=\sum X^{j} \frac{\partial}{\partial x^{j}}\right]$

take the special form
p and first-order differential operators (on differentiable functions defined near p) that

splomurin yo spronueuqus pue simudern ${ }^{\circ} \mathrm{PE}$ '

 Problem 1.3 (1) at this time. is called a Riemannian structure, or metric, which will be introduced in Chapter 2 . See to talk about the "length" of a vector on a manifold we shall be forced to introduce an of the lengths of $\partial / \partial p$, and so on, seem to have no physical significance. If we wish
 manifold. For example, the configuration space of a thermodynamical system might subset of some \mathbb{R}^{N}; we do not have the notion of length of a tangent vector to a general definition of a manifold given in 1.2 c does not require that M^{n} be given as some specific for example, we would say that $\|\partial / \partial \theta\|=1$ and $\|\partial / \partial \phi\|=\sin \theta$. However, the etric, it makes sense to talk about the length of tangent vectors to this particular S^{2},
Warning: Because S^{2} is a submanifold of \mathbb{R}^{3} and because \mathbb{R}^{3} carries a familiar n a different vector space S_{a}^{2} live in S^{2}, but rather in the linear space S_{p}^{2} attached to S^{2} at p. Vectors at $q \neq p$ live "time" $t=\theta . \partial / \partial \phi$ has a similar description. Note that these two vectors at p do not vector to a line of longitude, that is, keep ϕ constant and parameterize the meridian by $y=\sin \theta \sin \phi$, and $z=\cos \theta$. The coordinate vector $\partial / \partial \theta=\partial r / \partial \theta$ is the velocity

r, at each point of $F^{-1}(q)$. Then $F^{-1}(q)$ is an $(n-r)$-dimensional submanifold
of M^{n}. $F^{-1}(q) \subset M^{n}$ is not empty. Suppose further that F_{*} is onto, that is, F_{*} is of rank Theorem (1.12): Let $F: M^{n} \rightarrow V^{r}$ and suppose that for some $q \in V^{r}$ the locus

The main theorem on submanifolds is exactly as in euclidean space (Section 1.1c),

$$
\text { (d) } \frac{x^{x} \rho}{\mathcal{K} \rho}=(d) \frac{x_{\rho}}{n_{n} \rho}=!_{n}\left({ }^{*} d\right)
$$ matrix

 as in the case $\mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ discussed in $1.1 \mathrm{~b} . F_{*}: M_{p}^{n} \rightarrow V_{F(p)}^{r}$ is the linea Definition: The differential F_{*} of the map $F: M^{n} \rightarrow V^{r}$ has the same meaning but for the present we shall assume "embedded" without explicit mention. Later on we shall have occasion to discuss submanifolds that are not "embedded," submanifold of M^{n} is itself a manifold.

It is not difficult to see from this (as we saw in the case $S^{2} \subset \mathbb{R}^{3}$) that every embedded $x^{n}=f^{n}\left(x^{1}, \ldots, x^{\prime}\right)$ permuting some of the x coordinates) as a locus The implicit function theorem assures us that W^{\prime} can be locally described (after perhaps Jacobian matrix $\left[\partial F^{\alpha} / \partial x^{i}\right]$ has rank $(n-r)$ at each point of the locus.

provided W is locally described as the common locus
 Definition: $W^{r} \subset M^{n}$ is an (embedded) submanifold of the manifold M^{n}

 We have already discussed submanifolds of \mathbb{R}^{n} but now we shall need to discusssubmanifolds of a manifold. A good example is the equator S^{1} of S^{2}. t a diffeomorphism since the inverse $x=y^{1 / 3}$ is not differentiable at $x=0$.
We have already discussed submanifolds of \mathbb{R}^{n} but now we shall need to The map $F: \mathbb{R} \rightarrow \mathbb{R}$ given by $y=x^{3}$ is a differentiable homeomorphism, but it is of advanced calculus (see 1.3e) would assure us that the inverse is differentiable.) does not vanish, $\partial\left(y^{1}, \ldots, y^{n}\right) / \partial\left(x^{1}, \ldots, x^{n}\right) \neq 0$, then the inverse function theorem (see 1.2 a) with a differentiable inverse. (If F^{-1} does exist and the Jaçobian determinan addition, F^{-1} is also differentiable. Thus such an F is a differentiable homeomorphism When $n=r$, we say that F is a diffeomorphism provided F is $1: 1$, onto, and if, in differentiable. As usual, such functions are, in particular, continuous. shall assume, the functions F^{α} are differentiable functions of the x 's, we say that F is
Our main theorem on submanifolds can then be stated as follows

(i) $x \in M$ is a regular point if F_{*} maps M_{x}^{n} onto $V_{F(x)}^{r}$; otherwise we say that
x is a critical point.
(ii) $y \in V^{r}$ is a regular value provided either $F^{-1}(y)$ is empty, or $F^{-1}(y)$
Definition: If $F: M^{n} \rightarrow V^{r}$ is a differentiable map between manifolds, we say topologically an open interval on \mathbb{R}.
 Notice that $F^{-1}(2)$, which looks like a figure 8 , is not a submanifold; a neighborhood "verified" in our picture. (We have drawn the inverse images of $z=0,1, \ldots, 6$.) ifold of the torus for $0 \leq z \leq 6$ except for $z=0,2,4$, and 6 , and this is indeed

$$
b \in F^{-1}(2), c \in F^{-1}(4), \text { and the entire flat top } F^{-1}(6)
$$

tangent plane $T^{2}(p)$ is not horizontal, that is, at all points of T^{2} except $a \in F^{-1}(0)$ of \mathbf{v} onto the z axis. Note then that F_{*} will be onto at each point $p \in T^{2}$ for which the simply the z component of the spatial vector \mathbf{v}. In other words $F_{*}(\mathbf{v})$ is the projection z for \mathbb{R} by $z(t)=z(p(t))$, and it is clear from the geometry of $T^{2} \subset \mathbb{R}^{3}$ that $\dot{z}(0)$ is such that $p(0)=d$ and $\dot{p}(0)=\mathbf{v}$. The image curve in \mathbb{R} is described in the coordinate Consider a point $d \in T$ and a tangent vector v to T at d. Let $p=p(t)$ be a curve on T the height of the point $p \in T^{2}$ above the z plane (\mathbb{R} is being identified with the z axis) e rest of the torus). Define a differentiable map (function) $F: T^{2} \rightarrow \mathbb{R}$ by $F(p)=$

Figure 1.18

This means that there is a neighborhood U of x such that $F(U)$ is open in V and
$F: U \rightarrow F(U)$ is a diffeomorphism. This theorem is a powerful tool for introducing
new coordinates in a neighborhood of a point, for it has the following consequence.
Corollary (1.16): Let x^{1}, \ldots, x^{n} be local coordinates in a neighborhood U of
the point $p \in M^{n}$. Let y^{1}, \ldots, y^{n} be any differentiable functions of the x 's $($ thus
yielding a map: $\left.U \rightarrow \mathbb{R}^{n}\right)$ such that

$$
\frac{\partial\left(y^{1}, \ldots, y^{n}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)}(p) \neq 0
$$

Then the y's form a coordinate system in some (perhaps smaller) neighborhood
of p.

x.ıà

 differential calculus.The inverse function theorem is perhaps the most important theoretical result in all of

> C^{k+1}. The proof of Sard's theorem is delicate, especially if $n>r$; see, for example,
$[A, M, R]$. of differentiability class C^{1}, whereas if $n-r=k>0$, we demand that F be of class By sufficiently differentiable, we mean the following. If $n \leq r$, we demand that F be

$F^{-1}(y)$ either is empty or is a submanifold of M^{n} of dimension almost all values of F are regular values, and thus for almost all points $y \in V^{r}$,
 Sard's Theorem (1.14): If $F: M^{n} \rightarrow V^{r}$ is sufficiently differentiable, then

0 . We will not be precise in defining "almost all"; roughly speaking we mean, in some
sense, "with probability 1. " of V^{r}; the critical values cannot fill up any open set in V^{r} and they will have "measure"
0 . We will not be precise in defining "almost all"; roughly speaking we mean, in some The following theorem assures us that the critical values of a map form a "small" subset of this 2-dimensional set of critical points consists of the single critical value $z=6$. positive area (in the sense of elementary calculus) on T^{2}. Note however, that the image Figure 1.18, all values of z other than $0,2,4$, and 6 are regular. The critical points on T^{2}
consist of a, b, c, and the entire flat top of T^{2}. These latter critical points thus fill Of course, if x is a critical point then $F(x)$ is a critical value. In our toroidal example,
Theorem (1.13): If $y \in V^{r}$ is a regular value, then $F^{-1}(y)$ either is empty or is the 1-parameter family of maps

$$
\frac{e^{x} \theta}{\rho}(x), a \stackrel{I}{\square}=\mathbf{1}
$$

terms of cartesian coordinates x^{1}

 this point is normal to the submanifold. that a point is a critical point for this distance function iff the position vector to square of its distance from the origin. Show, using local coordinates u^{1}, \ldots, u^{n}
 projecting T^{2} into the $x y$ plane? in Figure 1.18. By inspection, what are the critical points of the map $T^{2} \rightarrow \mathbb{R}^{2}$
 $\dot{i}\left(\prod_{1} x\right) \zeta={ }_{2}\|x\|$
 suelgo.ld fairly delicate; see for example, $[A, M, R]$. The inverse function theorem and the implicit function theorem are essentially equiv the whole plane but rather in any strip $a \leq y<a+2 \pi$ globally so since $e^{z+2 \pi n i}=e^{z}$ for all integers $n . u, v$ form a coordinate system not in complex Jacobian $d w / d z=e^{z}$ never vanishing). Thus F is locally $1: 1$. It is not $w=e^{z}$. The real Jacobian $\partial(u, v) / \partial(x, y)$ never vanishes (this is reflected in the \mathbb{R}^{2} given by $u=e^{x} \cos y, v=e^{x} \sin y$. This is of course the complex analytic map
It is important to realize that this theorem is only local. Consider the map $F: \mathbb{R}^{2} \rightarrow$ neighborhood of any point of the plane other than the origin. so $\partial(r, \theta) / \partial(x, y)=1 / r$. This shows that polar coordinates are good coordinates in a For example, when we put $x=r \cos \theta, y=r \sin \theta$, we have $\partial(x, y) / \partial(r, \theta)=r$, and
chapters 4 and 5 of Arnold's book [A2]. this result is proved in the context of Banach spaces rather than $\mathbb{\mathbb { R } ^ { n }}$. I recommend highly ordinary differential equations. For details one can consult [A, M, R; chap. 4], where a precise statement of this "fundamental theorem" on the existence of solutions of along the integral curve through p (the 'orbit' of p) for time t, " We shall now give Thus one finds the integral curves of the preceding system, and $\phi_{t}(p)$ says, "Move

$d=(0) x$

with initial conditions

$d t$

associate a fiow $\left\{\phi_{t}\right\}$ having \vee as its velocity field, and that $\phi_{t}(p)$ can be found by
solving the system of ordinary differential equations calculus to science, states, roughly speaking, that to each vector field \mathbf{v} in \mathbb{R}^{n} one may
associate a flow $\left\{\phi_{t}\right\}$ having \mathbf{v} as its velocity field, and that $\phi_{t}(p)$ can be found by velocity vector field. The converse result, perhaps the most important theorem relating We thus have the almost trivial observation that to each flow $\left\{\phi_{l}\right\}$ we can associate the
is the derivative of f along the "streamline" thro $\left.=\frac{d}{d t} f\left(\phi_{t}(p)\right)\right]_{t=0}$

$\mathbf{v}_{p}(f)=\sum_{j} v^{j}(p) \frac{\partial f}{\partial x^{i}}=\sum_{j} \frac{d x^{j}}{d t} \frac{\partial f}{\partial x^{j}}$

$$
v^{\prime}(x)=\frac{d x}{d t}
$$

Thought of as a differential operator on functions
which will usually be written
 such a family simply a flow. Associated with any such flow is a time-independent
velocity field differentiable, then so is each ϕ_{t}^{-1}, and so each ϕ_{i} is a diffeomorphism. We shall call We say that this defines a 1 -parameter group of maps. Furthermore, if each ϕ_{t} is $\phi_{-t}\left(\phi_{t}(p)\right)=p, \quad$ i.e., $\phi_{-t}=\phi_{t}^{-1}$
and
where ϕ_{t} takes the molecule located at p when $t=0$ to the position of the same
molecule t seconds later. Since the flow is time-independent

$$
d x^{j} \partial
$$

$\phi_{t} \circ \phi_{s}=\phi_{t+s}=\phi_{s} \circ \phi_{t}$
equation $\frac{t p}{(t) \lambda p}$
дмท yวns $(-b, b)$ of the real line into U

$$
u \mathbb{4} \leftarrow\left(\ni^{\prime} \ni-\right) \times{ }^{d} \cap: \Phi
$$

32
for all $q \in U_{p}$, and thus $\left\{\phi_{t}\right\}$ defines a local 1-parameter "group" of diffeomor
phisms, or local flow.

> Moreover, there is a neighborhood U_{p} of p, a real number $\epsilon>0$, and a C^{k} map for all $t \in(-b, b)$. (This says that γ is an integral curve of \mathbf{v} starting at p.) Any
two such curves are equal on the intersection of their t-domains ("uniqueness"). a point $\mathrm{v}(x) \in \mathbb{R}^{n}$. Then for each $p \in U$ there is a curve γ mapping an interval subset U of \mathbb{R}^{n}. This can be written $\mathbf{v}: U \rightarrow \mathbb{R}^{n}$ since \mathbf{v} associates to each $x \in U$ tor field, $k \geq 1$ (each component $v^{j}(x)$ is of differentiability class C^{k}) on an open The Fundamental Theorem on Vector Fields in \mathbb{R}^{n} (1.19): Let \mathbf{v} be a C^{k} vec-

$$
\begin{aligned}
& \text { such that the curve } t \in(-\epsilon, \epsilon) \mapsto \phi_{t}(q):=\Phi(q, t) \text { satisfies the differential } \\
& \text { equation }
\end{aligned}
$$

 the differential equations
 \mathbb{R}^{n} earlier since we can use the local coordinates x_{U}. Suppose that W is not contained W is contained in a single coordinate patch $\left(U, x_{U}\right)$ we can proceed just as in the case recover a 1-parameter local group ϕ_{t} of diffeomorphisms for the following reasons. If
 sproguern uo spre! ropaд ${ }^{\circ} \mathrm{qt}^{\circ} \mathrm{I}$ $x^{2 / 3}$ is not differentiable when $x=0$. is also the "singular" solution $x(t)=0$ identically. This is a reflection of the fact that
 field \mathbf{v} is only continuous. For example, again on the real line, consider the differential We have required that the vector field \mathbf{v} be differentiable. Uniqueness can be lost if the
 this is not the case. The growth of the vector field can cause a solution curve to "leave" then our solutions would exist for all time, but as you shall verify in Problem 1.4(1) think that if we avoid dealing with pathologies such as digging out a point from \mathbb{R}^{1} the solution simply runs "off" the manifold because of the missing point. One might $x=-1$ at $t=0$ would exist for all times less than 1 second, but ϕ would noting at
Note that if we solved the differential equation $d x / d t=1$ on the real line with the
Thus L_{*} is the identity linear transformation, and by Corollary (1.16) we may use
$u^{1}, \ldots, u^{n-1}, t$ as local coordinates for M^{n} near p_{0}.

$$
\begin{array}{r}
L_{*}\left(\frac{\partial}{\partial u^{i}}\right)=\frac{\partial}{\partial u}\left[\phi_{0}(u, 0, \ldots, 0)\right]_{0}=\frac{\partial p_{(u, 0, \ldots, 0)}}{\partial u} \\
\text { Likewise } L_{*}\left(\partial / \partial u^{i}\right)=\partial / \partial u^{i} \text {, for } i=1, \ldots, n-1 \text {. Finally }
\end{array}
$$ of this map at the origin $u=0$ of the coordinates on W^{n-1}. Then by the geometric $L: W^{n-1} \times(-\epsilon, \epsilon) \rightarrow M^{n}$ given by $L(u, t)=\phi_{t}\left(p_{u}\right)$. We compute the differential To see this we shall apply the inverse function theorem. We thus consider the map used as (curvilinear) coordinates for some n-dimensional neighborhood of p in M^{n} that if W is sufficiently small and if t is also sufficiently small, then (u, t) can be p_{u}. This point can be described by the n-tuple (u, t). The fundamental theorem states

Let u^{1}, \ldots, u^{n-1} be local coordinates for W, and let p_{u} be the point on W with

 hypersurface, that is, a submanifold of codimension 1 , that passes through p. Assume

$$
d=(d)^{0} \phi \text { oou!s pue }{ }^{*} T \text { jo 8u!ubour }
$$

$$
\text { that } W \text { is reanversal to } v \text {, that is, the vector field } v \text { is not tangent to } W
$$ Then of course it doesn't vanish in some neighborhood of p in M^{n}. Let W^{n-1} be a replace M^{n} by \mathbb{R}^{n}.) Suppose that the vector field v does not vanish at the point p following consequence. (Since our result will be local, it is no loss of generality to depends smoothly on the initial condition p and on the time of flow t. This has the theorem 4.1.14] or [A2, chap. 4] for details of the following. The map $(p, t) \rightarrow \phi_{t}(p)$ equations, as given in the previous section, is not the complete story; see $[A, M, R$

yield a flow ϕ_{t} ! In the next chapter we shall see how to deal with n-tuples that transform as "grad f."

 would not say the same thing in two overlapping patches, and consequently would not$$
\frac{q_{x e}}{f e}=\frac{p}{a_{x p}}
$$

ential equation fo

 t is real. The integral curves are of course lines parallel to the real axis. This

 Consider, as in the statement of the fundamental theorem, the case when U_{p} is

$d=(0) x$ pue $e^{x}=\frac{t p}{x p}$

1.4(1) Consider the quadratic vector field problem on $\mathbb{R}, v(x)=x^{2} d / d x$. You must

surejqo.d

write down explicitly the functions u^{j} in terms of the x^{\prime} s).
$c^{1}, \ldots, u^{n-1}(x)=c_{n-1}$ (but of course, we might have to solve the original system to near any nonsingular point of any system there are $(n-1)$ first integrals, $u^{1}(x)=$ integrals," that is, constants of the motion, for the system (1.20). We conclude that is, however, considerable. For example, $u^{1}=c_{1}, \ldots, u^{n-1}=c_{n-1}$, are ($n-1$) "first one must solve the original system of differential equations. The theoretical interest result is of theoretical interest only, for in order to introduce the new coordinates u Thus all flows near a nonsingular point are qualitatively the same! In a sense this

37

$$
0_{0} n \frac{!}{\zeta}=n^{n} \cdot \frac{!}{\zeta}=\Delta
$$

a unique expansion

Choose a basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ for the n-dimensional space E. Then a vector $\mathbf{v} \in E$ has $0)^{T}, \ldots$, the general n-dimensional vector space E has no basis prescribed.
 Let E be a real vector space. Although for some purposes E may be infinite-dimensional 2.1a. Linear Functionals and the Dual Space

 in component form and to help prevent us from making blatant errors. notation is designed to help us recognize intrinsic quantities when they are presented our use of sub- and superscripts when we express components in terms of bases; the on them "intrinsically," that is, in a basis-free fashion. We shall also be very careful in law generalizing 1.6. We shall, however, strive to define these objects and operations both notions of vector and a whole class of objects characterized by a transformation tuple of components of a vector. These components $\partial F / \partial x^{j}$ transform as a new type of $\partial F / \partial x^{j}$ and we noticed that this n-tuple does not transform in the same way as the n

> space \mathbb{R}. Thus
> Definition: A (real) limear functional α on E is a real-valued linear function α,
that is, a linear transformation $\alpha: E \rightarrow \mathbb{R}$ from E to the 1 -dimensional vector
> Definition: A (real) linear functional α on E is a real-valued linear function α,

but that this isomorphism is "unnatural," that is, dependent on the choice of basis. choice of basis, is isomorphic to \mathbb{R}^{n} under the correspondence $\mathrm{v} \rightarrow\left(v^{1}, \ldots, v^{n}\right) \in \mathbb{R}^{n}$ where v is a 1×1 matrix. As usual, we see that the n-dimensional vector space E, with $\stackrel{N}{0}$
representation as a matrix product
the components of a vector by a column matrix. We can then write our preferred Note that in the matrix v we are preserving the traditional notation of representing The first is a symbolic row matrix since each entry is a vector rather than a scalar
 we will simply use the traditional $\sum_{j} v^{j} \mathbf{e}_{j}$.
We shall use the matrices remind us that we are not differentiating the components in this expression. Sometime incorrectly, that we are differentiating the components v^{j}. We shall employ the bold ∂ $1.3 \mathrm{c})$; then our favored presentation would say $\mathrm{v}=\sum_{j} \partial / \partial x^{j} v^{j}$, making it appear manifold), we can write the standard basis at the origin as $\mathrm{e}_{j}=\partial / \partial x^{j}$ (as in Sectio with calculus, however, this notation is awkward. For example, in \mathbb{R}^{n} (thought of as
Note that the components of a linear functional are written as a row matrix a.

$$
o v=\rho_{0}!n=n
$$

> $\alpha=\sum a_{j} \sigma^{j} \cdot a_{j}$ defines the $j^{\text {th }}$ component of α.
If we introduce the matrices In (2.3) we introduced the n-tuple $a_{j}=\alpha\left(\mathbf{e}_{j}\right)$ for each $\alpha \in E^{*}$. From (2.4) we see This very important equation shows that the σ 's do form a basis of E $o(0) x \stackrel{!}{\square}=x$

$a(0) x \square=\left(a x_{0} Z\right) x=(\mathbf{1}) x$

$$
\mathbb{Y} \ni 0 \quad(\wedge) \nsim \rho=:(\Lambda)(x)
$$

Thus the two linear functionals α and $\sum \alpha\left(\mathbf{e}_{j}\right) \sigma^{j}$ must be the same! we note that if $\alpha \in E^{*}$ then a_{k} shows that all the coefficients a_{k} vanish, as desired. To show that the σ 's span E^{*} linear combination $\sum a_{j} \sigma^{j}$ is the 0 functional. Then $0=\sum_{j} a_{j} \sigma^{j}\left(\mathbf{e}_{k}\right)=\sum_{j} a_{j} \delta^{j}{ }_{k}=$ Let us verify that the σ 's do form a basis. To show linear independence, assume that a Thus σ^{i} is the linear functional that reads off the $i^{\text {th }}$ component (with respect to the
basis e) of each vector \mathbf{v}.

$$
\sigma^{i}\left(\sum_{j} \mathbf{e}_{j} v^{j}\right)=\sum_{j} \sigma^{i}\left(\mathbf{e}_{j}\right) v^{j}=\sum_{j} \delta_{j}^{i} v^{j}=v^{i}
$$

and then "extending σ by linearity," that is,

$$
\rho=(!), o
$$

If $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis of E, we define the dual basis $\sigma^{1}, \ldots, \sigma^{n}$ of E^{*} by first
putting
We shall see in a moment that if E is n-dimensional, then so is E^{*}
$(\alpha+\beta)(\mathbf{v}):=\alpha(\mathbf{v})+\beta(\mathbf{v}), \quad \alpha, \beta \in E^{*}, \quad v \in E$
Definition: The collection of all linear functionals α on a vector space E form a
new vector space E^{*}, the dual space to E, under the operations
¿әл! ¢ spuo!̣ounj reau!
that is, with an element of E. In fact δ_{0} is not a function on \mathbb{R} at all. Where, then, do the
COVECTORS AND RIEMANNIAN METRICS 39

 If \mathbf{e} is a basis of E, then we may write $\mathbf{v}=\mathbf{e} v$ and $\mathbf{w}=\mathbf{e} w$. Then definite, but to accommodate relativity we shall not always demand this. $\|\mathbf{v}\|^{2}:=\langle\mathbf{v}, \mathbf{v}\rangle$ is positive when $\mathbf{v} \neq \mathbf{0}$, we say that the inner product is positi that is, the only vector "orthogonal" to every vector is the zero vector. If, furthe Futhermore \langle,$\rangle is nondegenerate in the sense that \langle\mathbf{f}\langle\mathbf{v}, \mathbf{w}\rangle=0$ for all \mathbf{w} then $\mathbf{v}=$ when the other is held fixed (i.e., it is bilinear), and it is symmetric $\langle\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{v}$ Thus, for each pair of vectors \mathbf{v}, \mathbf{w} of $E,\langle\mathbf{v}, \mathbf{w}\rangle$ is a real number, it is linear in each ent Let E be an n-dimensional vector space with a given inner (or scalar) product \langle,

components of a single contravariant vector. We shall never use this terminology
See Problem 2.1 (1) at this time. could say that the n-tuple of covariant vectors $\left(d x^{1}, \ldots, d x^{n}\right)$ transforms as do
components of a single contravariant vector. We shall never use this terminology. $d x_{V}{ }^{1}, \ldots, d x_{V}$ are related to the n-coordinate 1 -forms $d x_{U}{ }^{1}, \ldots, d x_{U}{ }^{n}$. In a sense w
could say that the n-tuple of covariant vectors ($d x^{1}, \ldots, d x^{n}$) transforms as do th This should be compared with (2.9). This latter tells us how the n-coordinate 1 -form how the components of a single 1 -form α transform under a change of coordinate vector transform under a change of coordinates. Equation (2.11), likewise, tells u

be compared with (1.6). In the notation of (1.7) we may write This is the transformation rule for the components of a covariant vector, and shoul

$$
\text { and this yields } a^{V}=a^{U}\left(\partial x_{U} / \partial x_{V}\right) \text {, or }
$$

inverse matrix to $\partial x_{V} / \partial x_{U}$. Equation (2.10) is, in matrix form, $a^{U}=a^{V}\left(\partial x_{V} / \partial x_{U}\right.$

But $\sum_{j}\left(\partial x_{V}{ }^{i} / \partial x_{\nu}{ }^{j}\right)\left(\partial x_{V}{ }^{j} / \partial x_{V}{ }^{k}\right)=\partial x_{V}{ }^{i} / \partial x_{V}{ }^{k}=\delta^{i}{ }_{k}$ shows that $\partial x_{\nu} / \partial x_{V}$ is th

$$
\left(\frac{n^{n x p}}{1_{x p}}\right) n_{A}^{n} 马=n_{n}
$$

as $\sum_{i} a^{U}{ }_{j} d x_{U}{ }^{j}$. We then must have and for a general covector $\sum_{i} a^{V}{ }_{i} d x_{V}{ }^{i}=\sum_{i j} a^{V}{ }_{i}\left(\partial x_{V} / \partial x_{U}{ }^{j}\right) d x_{U}{ }^{j}$ must be the sam

$n_{x p}\left(\frac{e^{n \times e}}{a^{n \times e}}\right) Z=,^{n \times p}$

Under a change of local coordinates the chain rule yields

tensors and exterior forms
Note that if \mathbf{e} is an orthonormal basis then $v_{j}=v^{j}$ language, the covariant components of the contravariant vector v it a j, by means of the metric tensor $g_{i j}$." We shall also call the $\left(v_{j}\right)$, with abuse of version; in tensor analysis one says that we have "lowered the upper index i, making since $g_{i j}=g_{j i}$. The subscript j in v_{j} tells us that we are dealing with the covariant $a \because 8 \square=48, a \square=1 a$
traditional in "tensor analysis" to use the same letter v rather than v. Thus we write
for the components of the covariant version
Thus the covariant version of the vector \mathbf{v} has components $v_{j}=\sum_{i} v^{i} g_{i j}$ and it is

$=\sum_{j}\left(\sum_{i} v^{i} g_{i j}\right) \sigma$

 $=\sum_{j}\left(\sum_{i} \mathbf{e}_{i} v^{i}, \mathbf{e}_{j}\right\rangle \sigma^{j}$ $=\sum_{j}\left(\mathbf{v}, \mathbf{e}_{j}\right) \sigma^{j}$$$
v=\sum_{j} \nu_{j} \sigma^{j}=\sum_{j} v\left(\mathbf{e}_{j}\right) \sigma^{j}
$$

terms of any basis e of E and the dual basis σ of E^{*} we have from (2.4) may associate a covector v; we shall call ν the covariant version of the vector v. In is a linear functional, $v \in E^{*}$. Thus to each vector v in the inner product space E we $\left\langle\mathbf{M}^{\prime} \mathbf{\Lambda}\right\rangle=(\mathbf{N}) \mathbf{n}$

$$
\text { the function } v \text { defined by }
$$

> By hypothesis, $\langle\mathbf{v}, \mathbf{w}\rangle$ is a linear function of w when v is held fixed. Thus if $v \in E$, orthonormal bases, one would never have to introduce the matrix $\left(g_{i j}\right)$, and this is what
is done in elementary linear algebra. $\sum_{j} v^{j} w^{j}$ takes the usual "euclidean" form. If one restricted oneself to the use of matrix (and this can happen only if the inner product is positive definite), then $\langle\mathbf{v}, \mathbf{w}\rangle=$ Note that when \mathbf{e} is an orthonormal basis, that is, when $g_{i j}=\delta_{j}^{i}$ is the identity The matrix ($g_{i j}$) is briefly called the metric tensor. This nomenclature will be explained
. 10
then If we define the matrix $G=\left(g_{i j}\right)$ with entries

We must make some final remarks about linear functionals. It is important to reali
that given an n-dimensional vector space E, whether or not it has an inner produc
one can always construct the dual vector space E^{*}, and the construction has nothin
to do with a basis in E. If a basis e is picked for E, then the dual basis σ for E^{*} sider, for instance, the plane \mathbb{R}^{2}, where we use a basis e that consists of unit but
orthogonal vectors.
 simple case. First of all, we have immediately contravariant components of the covector ν. yields the contravariant version \mathbf{v} of the covector $v=\sum_{j} v_{j} \sigma^{j}$. Again we call (v^{i})

$$
v^{i}=\sum_{i} g^{i j} v
$$

$\left({ }_{4} 8\right)=1-D$ g but written with superscripts v_{j}.
again symmetric. We shall denote the entries of this inverse matrix by the same lett $v(\mathbf{w})=\langle\mathbf{v}, \mathbf{w}\rangle$ for all w. For this we need only solve (2.15) for v^{i} in terms of the giv
v_{i}. Since $G=\left(g_{i j}\right)$ is assumed nondegenerate, the inverse matrix G^{-1} must exist covariant version of some vector v. Given $v=\sum_{j} v_{j} \sigma^{j}$ we shall find v such

In our finite-dimensional inner product space E, every linear functional v is
TENSORS AND EXTERIOR FORMS
44
$\langle\boldsymbol{M} \cdot f \Delta\rangle=(\mathbf{M}) f p$

$f \Delta=f$ p.is
Definition: If M^{n} is a (pseudo-) Riemannian manifold and f is a differentiable
function, the gradient vector
This is the transformation rule for the components of the metric tensor.

$$
\begin{aligned}
& \left\langle\frac{i^{x} \theta}{\theta} \cdot \frac{{ }^{x} \theta}{\theta}\right\rangle=(x)^{18}
\end{aligned}
$$

In $\begin{aligned} & \text { In } \\ & \text { matrices (the "metric tensor") }\end{aligned}$ Riemannian metric is called a (pseudo-) Riemannian manifold. resulting structure on M^{n} a pseudo Riemannian metric. A manifold with a (pseudom) $\langle\mathbf{u}, \mathbf{v}\rangle=0$ for all \mathbf{v} only if $\mathbf{u}=\mathbf{0}$) rather than positive definite, then we shall call the definite inner product \langle,$\rangle in each tangent space M_{p}^{n}$. If \langle,$\rangle is only nondegenerate (is$ A Riemannian metric on a manifold M^{n} assigns, in a differentiable fashion, a positive
2.1d. Riemannian Manifolds and the Gradient Vector a calculus that cannot be applied to vectors! not do so, for there is a very powerful calculus that has been developed for covectors, have $\left\langle\mathbb{f}_{i}, \mathbf{e}_{j}\right\rangle=\delta_{j}^{i}$. Although this new basis is used in applied mathematics, we shall basis of the original vector space E, sometimes called the basis of E dual to e, and we is a unique vector \mathbf{f}_{i} such that $\sigma^{i}(\mathbf{w})=\left\langle\mathbf{f}_{i}, \mathbf{w}\right\rangle$ for all $\mathbf{w} \in E$. Then $\mathbf{f}=\left\{\mathbf{f}_{i}\right\}$ is a new $\sum v^{i} \mathbf{e}_{i}$. Then we know that each σ^{i} can be represented as $\sigma^{i}=\left\langle\mathbf{f}_{i}, \cdot\right\rangle$; that is, there may write $\nu=\langle\mathbf{v}, \cdot\rangle$. In terms of a basis we are associating to $\nu=\sum v_{i} \sigma^{i}$ the vector basis; namely to $v \in E^{*}$ we associate the unique vector v such that $v(w)=\langle\mathbf{v}, \mathbf{w}\rangle$; we As we have seen, there is another correspondence $E^{*} \rightarrow E$ that is independent of this correspondence. Suppose now that an inner product has been introduced into E since if we change the basis in E the correspondence will change. We shall never use and E given by $\sum a_{j} \sigma^{j} \rightarrow \sum a_{j} \mathbf{e}_{j}$, but this isomorphism is said to be "unnatural" determined. There is then an isomorphism, that is, a $1: 1$ correspondence between E^{*}
$\left\{p=\left.(x) f\right|_{u} W \ni x\right\}=:(p)_{1-u} \mathcal{W}$

 for a positive definite inner product), $|\mathbf{v}(f)|=|\langle\nabla f, \mathbf{v}\rangle| \leq\|\nabla f\|\|\mathbf{v}\|=\|\nabla f\|$ is $\mathbf{v}(f)=\sum\left(\partial f / \partial x^{j}\right) v^{j}=d f(\mathbf{v})=\langle\nabla f, \mathbf{v}\rangle$. Then Schwarz's inequality (which hold euclidean space. If \mathbf{v} is a unit vector at $p \in M$, then the derivative of f with respect to

 $x^{2}+y^{2}+z^{2}$, just as orthogonal transformations in \mathbb{R}^{3} are those transformations thatpreserve $x^{2}+y^{2}+z^{2}!$) the changes of coordinates in \mathbb{R}^{4} that leave the origin fixed and preserve the form $-c^{2} t^{2}+$

$$
\begin{array}{r}
{\left[\frac{z e}{f e} \cdot \frac{x e}{f e} \cdot \frac{x e}{f e} \cdot \frac{t e}{f e} \frac{z^{j}}{\mathrm{l}}-\right] \sim f \Delta} \\
e\left(\frac{f x e}{f e}\right) \underbrace{\frac{1=!}{\zeta}+' e\left(\frac{p e}{f e}\right)}_{\varepsilon} \frac{z^{\jmath}}{\mathrm{I}}=f \Delta
\end{array}
$$

inq

$$
\left.\left(I^{\prime} I^{\prime} I^{\prime}{ }_{乙}\right\urcorner-\right) 8 \mathrm{u}!\mathrm{p}=(!8)
$$

that is, $\left(g_{i j}\right)$ is the 4×4 diagonal matrix

$$
\begin{array}{lll}
=-c^{2} & \text { if } i=j=0 \\
=0 & & \text { otherwise }
\end{array}
$$ endowed with the pseudo-Riemannian metric given in the so-called inertial coordinate Cxample (special relativity): Minkowski space is, as we shall see in Chapter $7, \mathbb{R}^{4}$ bu is, if the coordinates are such that $g^{i j}=\delta_{j}^{i}$. see that $d f$ and ∇f will have the same components if the metric is "euclidean," that Note then that $\|\nabla f\|^{2}:=\langle\nabla f, \nabla f\rangle=d f(\nabla f)=\sum_{i j}\left(\partial f / \partial x^{i}\right) g^{i j}\left(\partial f / \partial x^{j}\right)$. We

$$
(\nabla f)^{i}=\sum g^{i j} \frac{\partial f}{\partial x^{j}}
$$

$$
t=x^{0}, x=x^{1}, y=x^{2}, z=x^{3}, \text { by }
$$

$$
148 \mathrm{H} \text { fo peods out s! } 0 \text { orəun } \quad \circ=!=!f!
$$

$\frac{\phi \varrho}{\rho} \phi(\not \Delta)+\frac{\theta \Theta}{\rho} \theta(\beth \Delta)+\frac{1 Q}{\rho},(\not \Delta \Delta)=f \Delta$

u! $f(t \Delta)$ sque!p!feoo eut өinduos (!!)
Note: Don't fiddle with matrices; just use the chain rule $\partial / \partial r$
$(\partial x / \partial r) \partial / \partial x+\ldots)$ 2.1(2) Let x, y, and z be the usual cartesian coordinates in \mathbb{R}^{3} and let $u^{1}=r, u^{2}=\theta$

Problems

 deformation. For more on such matters see [M, chap. 1]. and for small t (see 1.4a). Such a motion of level sets into level sets is called a Morse $f=a$ into the level set $f=a+t$. Of course this result need only be true locally (i.e., we move along the same curves of steepest ascent but at a different speed) then

$\frac{\|f \Delta\|}{\int \Delta}=\frac{t p}{x p}$

$d f / d t=d f(d x / d t)=\langle\nabla f, \nabla f\rangle$. Note then that if we solve instead the differential
equations constant. How does f change along one of these "curves of steepest ascent"? Well,

$\left(\frac{1 x \varphi}{f \varphi}\right), 8=\frac{1 p}{, x p}$

makes good sense to write $d x / d t=\nabla f$; that is, the "correct" differential equations are

 Finally recall that we showed in paragraph 1.4 b that one does not get a well-defined that ∇f is orthogonal to the level sets.

 "orthogonal" to the tangent space to $M^{n-1}(a)$ at p, but this makes no sense since $d f$ $d f ; d f(d x / d t)=0$ since $f(x(t))$ is constant. We are tempted to say that $d f$ is

$\left(U^{\prime}, x^{\prime}\right)$. Then the same point (p, v) would be described by the new $2 n$-tuple
where

$$
x^{\prime \prime}(p), \ldots, x^{\prime n}(p), v^{\prime 1}, \ldots, v^{\prime n}
$$

and

$$
x^{\prime i}=x^{\prime i}\left(x^{1}, \ldots, x^{n}\right)
$$

$$
v^{\prime i}=\sum_{j}\left[\frac{\partial x^{\prime i}}{\partial x^{j}}\right](p) v^{j}
$$

We see then that $T M^{n}$ is a 2n-dimensional differentiable manifold!
 the components of a vector. This $2 n$-dimensional coordinate patch is then of the form whereas the second set, the v 's, fill out an entire \mathbb{R}^{n} since there are no restrictions on (U, x). Note that the first n-coordinates, the x 's, take their values in a portion U of \mathbb{R}^{n} $2 n$ local coordinates to each tangent vector to M^{n} that is based in the coordinate patch The $2 n$-tuple (x, v) represents the vector $\sum_{j} v^{j} \partial_{j}$ at p. In this manner we associate

$$
{ }_{u} a^{\prime \cdots}{ }_{1} a^{\prime}(d)_{u} x \cdot \cdots \cdot(d)_{1} x
$$

Then (p, v) is completely described by the $2 n$-tuple of real numbers p we have the coordinate basis $\left(\partial_{i}=\partial / \partial x^{i}\right)$ for M_{x}^{n}. We may then write $\mathbf{v}=\sum_{i} v^{i} \partial_{i}$ as follows. Let $(p, \mathbf{v}) \in T M^{n}$. p lies in some local coordinate system U, x^{1}, \ldots, x^{n}. A a tangent vector to M at the point p, that is, $\mathbf{v} \in M_{p}^{n}$. Introduce local coordinates in $T M$ Thus a "point" in this new space consists of a pair (p, \mathbf{v}), where p is a point of M and \mathbf{v} is

วाpung 1 นว

What is the space of velocity vectors to the configuration space of a dynamical system?

$(\partial f / \partial r) d r+\cdots$, frequently has all the information one needs!

 books (they are called the physical components); but we shall have littleuse for such components; $d f$, as given by the simple expression $d f=$ These new components of grad f are the usual ones found in all physics

$$
\phi_{1} \theta_{\phi r}(1 \Delta)+\theta_{\theta_{0}}(1 \Delta)+\hat{\rho}_{1}(1 \Delta)=1 \Delta
$$

vectors. Defins of this orthonormal set Verify that $\partial / \partial r, \partial / \partial \theta$, and $\partial / \partial \phi$ are orthogonal, but that not all are unit
vectors. Define the unit vectors $\mathrm{e}_{j}^{\prime}=\left(\partial / \partial u^{j}\right) /\left\|\partial / \partial u^{j}\right\|$ and write ∇f in Verify that $\partial / \partial r, \partial / \partial \theta$, and $\partial / \partial \phi$ are orthogonal, but that not all are unit
is topologically $U \times \mathbb{R}^{n}$ we say that the tangent bundle $T M$ is locally a product. using the coordinates in U we may read off the components of the vector. Since $\pi^{-1}(U)$ Locally of course we may choose such a projection; if the point is in $\pi^{-1}(U)$ then by been designated at the point at which the vector is based!
 there is no projection map $\pi^{\prime}: T M \rightarrow \mathbb{R}$ We have drawn a schematic diagram of the tangent bundle $T M . \pi{ }^{-1}(x)$ represents
all vectors tangent to M at x, and so $\pi^{-1}(x)=M_{x}^{n}$ is a copy of the vector space \mathbb{R}^{n}.
It is called "the fiber over x." Our picture makes it seem that $T M$ is the product space
$M \times \mathbb{R}^{n}$, but this is not so! Although we do have a global projection $\pi: T M \rightarrow M$,

It is clearly differentiable.
called projection that assigns to a vector tangent to M the point in M at which the
vector sits. In local coordinates,

 repuess ou s! әаәц ınq ‘sәп!
 M^{n} is thought of, in mechanics, as a velocity vector; its components with respect to th is the 2 -sphere S^{2} (with center at the pin). A tangent vector to the configuration spac the configuration space is $M^{2}=S^{1} \times S^{1}=T^{2}$. For the spatial single pendulum M need not be euclidean space. For the planar double pendulum of paragraph 1.2 b (v) $M^{2}=\mathbb{R} \times \mathbb{R}$ with coordinates q^{1}, q^{2} (one for each particle). The configuration spac For example, if we are considering the motion of two mass points on the real line space. The coordinates x are usually called q^{1}, \ldots, q^{n}, the "generalized coordinates

for a given vector, they will all agree that the 0 -vector will have all components 0 . exists. Although different coordinate systems will yield perhaps different componen special section, the 0 section (corresponding to the identically 0 vector field), alway $v(M)$ is then an n-dimensional submanifold of the $2 n$-dimensional manifold $T M$. tangent bundle. In a patch $\pi^{-1}(U)$ it is described by $v^{i}=v^{i}\left(x^{1}, \ldots, x^{n}\right)$ and the imag such that $\pi \circ v$ is the identity map of M into M. As such it is called a (cross) section of th $T M$ that "lies over x." Thus a vector field can be considered as a map $v: M \rightarrow T$

Figure 2.3

s.2 an6!es

and thus $T_{0} M^{n}$ is a $(2 n-1)$-dimensional submanifold of $T M^{n}!$ In particular $T_{0} M$
itself a manifold.
In the following figure, $\mathbf{v}_{0}=\mathrm{v} /\|\mathbf{v}\|$.
Since $\operatorname{det}\left(g_{i j}\right) \neq 0$, we conclude that not all $\partial f / \partial v^{k}$ can vanish on the subset $v \neq 0$,
$a(x) \sqrt{4} \% Z=\frac{x^{a} \varphi}{\int \rho}$
are (x, v). Note, using $g_{i j}=g_{j i}$, that function $f(x, v)=\sum_{i j} g_{i j}(x) v^{i} v^{j}$ equal to a constant. The local coordinates in $T M$

In other words, we are looking at the locus in $T M$ defined locally by putting the single $I=r_{n} a(x) n_{? 8} \stackrel{!}{\zeta}:{ }_{u} W^{0} L$
$\left(x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}\right)$ of $T M$, then this unit tangent bundle is locally defined by
The tangent bundle

$\left.\frac{{ }_{y}^{x \rho}}{{ }_{y} K \rho}\right) \stackrel{r^{x}}{\langle }=\left(\frac{r^{x} \rho}{\rho}\right) * \phi$

 matrix $\partial y / \partial x$ in terms of local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ near x and $\left(y^{1}, \ldots, y^{r}\right)$ ne$y=\phi(x)$. Thus, in terms of the coordinate bases Recall that the differential ϕ_{*} of a smooth map $\phi: M^{n} \rightarrow V^{r}$ has as matrix the Jacob

 $T^{*} M^{n}$ is again a $2 n$-dimensional manifold. We shall see shortly that the phase space

$p(x)\left[\frac{n^{x}}{x_{0}}\right] \zeta=i n$

$$
\left(u^{x} \cdot \cdots{ }_{1} x\right)_{{ }_{1}} x={ }_{{ }_{1}} x
$$ The $2 n$-tuple (x, a) represents the covector $\sum a_{i} d x^{i}$ at the point x. If the point p a

lies in the coordinate patch $U^{\prime}, x^{\prime \prime}, \ldots, x^{\prime n}$, then
pue

$$
(x)^{u^{\prime}}{ }^{\prime \cdots \cdot}(x)^{\mathfrak{I}_{\mathcal{D}}}(x)_{u} x^{\prime \cdots}(x)_{1} x
$$

described by the $2 n$-tuple pace $M_{x}^{n *}$, and α can be expressed as $\alpha=\sum a_{i}(x) d x^{i}$. Then (x, α) is complet in a coordinate patch U, x^{1}, \ldots, x^{n}, then $d x^{1}, \ldots d x^{n}$, gives a basis for the cotang points of M. A point in $T^{*} M$ is a pair (x, α) where α is a covector at the point x. If x The cotangent bundle to M^{n} is by definition the space $T^{*} M^{n}$ of all covectors at

oneds aseud pur ompung puosur 10 a auL ${ }^{\circ} \mathbb{E}^{\circ}$

¿OJeds aseyd s? 1EUM

> projective 3 -space $T_{0} S^{2} \sim \mathbb{R} p^{3} \sim S O(3)$
 topologically projective space mean that $T_{0} S^{2} \rightarrow S O(3)$ is a diffeomorphism. We have seen in 1.2 b (vii) that $S O$ (3) unit vectors tangent to S^{2} will correspond to nearby rotation matrices; precisely, that the topology of $T_{0} S^{2}$ is the same as that of $S O(3)$, meaning roughly that near In this way we have set up a $1: 1$ correspondence $T_{0} S^{2} \rightarrow S O(3)$. It also seems evid orthonormal basis e of \mathbb{R}^{3}. Then $\mathbf{f}_{i}=e_{j} R^{j}{ }_{i}$ for a unique rotation matrix $R \in S O$ these orthonormal vectors to the origin of \mathbb{R}^{3} and compare them with a fixed right-han
 It is clear that by this association, there is a $1: 1$ correspondence between unit tange
 have no relation to the map ϕ ．In other words，$\phi_{*}(\mathbf{v})$ does not yield a well defined vector $y=\phi(x)=\phi\left(x^{\prime}\right)$ ．Usually we shall have $\phi_{*}(\mathbf{v}(x)) \neq \phi_{*}\left(\mathbf{v}\left(x^{\prime}\right)\right)$ since the field \mathbf{v} need
 Warning：Let $\phi: M^{n} \rightarrow V^{r}$ and let v be a vector field on M It

$$
x p\left(\frac{{ }^{x \rho}}{{ }_{s} \mathcal{\kappa}}\right) \stackrel{?}{\zeta}=\left({ }_{s} \kappa p\right)_{*} \phi
$$

of the Jacobian matrix．）
$\phi^{*}\left(d y^{S}\right)$ is given immediately from（2．24）；since $d y^{S}=\sum_{R} \delta^{S}{ }_{R} d y^{R}$

 In terms of matrices，the differential ϕ_{*} is given by the Jacobian matrix $\partial y / \partial x$ acting
on columns v at x from the left，whereas the pull－back ϕ^{*} is given In terms of matrices，the differential $\phi_{* *}$ is given by the J

Thus

$$
{ }_{r} x p\left(\frac{r^{x} \rho}{{ }_{y} \kappa \rho}\right) \text { » } q^{r^{d!}}=
$$

$$
=\sum_{j} \beta\left(\sum_{R}\left(\frac{\partial y^{R}}{\partial x^{j}}\right) \frac{\partial}{\partial y^{R}}\right) d x^{j}
$$

$$
y^{\kappa} p^{y} q \stackrel{y}{\zeta}=g \text { а.әчм }
$$

（sでZ）

$(ャ て ゙ て)$

$$
x p\left(\frac{r^{x} Q^{2}}{e} * \phi\right) g^{\prime} \stackrel{!}{\zeta}=
$$

Let $\left(x^{l}\right)$ and $\left(y^{R}\right)$ be local coordinates near x and y ，respectively．The bases for the
tangent vector spaces M_{x} and V_{y} are given by $\left(\partial / \partial x^{j}\right)$ and $\left(\partial / \partial y^{R}\right)$ ．Then

$(\varepsilon \tau ้ Z), \quad \therefore \wedge \quad((\Lambda) * \phi) g=:(\mathrm{A})(g)_{*} \phi$

кq рәицәр

 Let $\phi_{*}: M_{x} \rightarrow V_{y}$ be the differential of ϕ ．The pull－back ϕ^{*} is the linear map of manifolds and let $\phi(x)=y$simply says，＂Apply the chain rule to the composite function $f \circ \phi$ ，that is，$f(y(x))$ ．＂

$$
\left(\frac{x^{\wedge} \varphi}{f e}\right)\left(\frac{x^{x} e}{x^{\kappa e}}\right) \stackrel{a}{\zeta}=(f)\left(\frac{r^{x} \varrho}{\varrho}\right) * \phi
$$

into vector fields. (There is an exception if $n=r$ and ϕ is 1:1.) On the other hand,

$$
\frac{{ }_{1} b c}{a b c}=\frac{4 b e}{a b c}
$$

grangian is frequently of the form
alized momenta. This terminology is suggested by the following situation. The La-
 L, that is, a change of "dynamics." giving a Lagrangian function, but of course the identification changes with a change of $T^{*} M$ exist as soon as a manifold M is given. We may (locally) identify these spaces by $\sum_{j}\left(\partial L / \partial \dot{q}^{j}\right) d q^{j}$, by introducing an extra structure, a Lagrangian function. $T M$ and vectors on M^{n}. We have managed to make such an identification, $\sum_{j} \dot{q}^{j} \partial / \partial q^{j} \rightarrow$

Recall that there is no natural way to identify vectors on a manifold M^{n} with cochanics). This space $T^{*} M$ of covectors to the configuration space is called in mechanics
the phase space of the dynamical system. p_{1}, \ldots, p_{n}) the local coordinates for $T^{*} M^{n}$ (even when we are not dealing with mefrom the tangent bundle to the cotangent bundle. We shall frequently call $\left(q^{1}, \ldots, q^{n}\right.$, $p: T M^{n} \rightarrow T^{*} M^{n}$
> local description of a map
 coordinates in the tangent bundle but as coordinates for the cotangent bundle. Equation space M^{n} but rather a covector. The q 's and p^{\prime} 's then are to be thought of not as local and so the p 's represent then not the components of a vector on the configuration $\left(\frac{A b \varphi}{n b \varrho}\right) \stackrel{i}{n} d=A^{!} d$
the case of the two masses on \mathbb{R} we have the momentum p is by (2.32) simply the covariant version of the velocity vector \dot{q}. then the kinetic energy represents half the length squared of the velocity vector, a

$$
b, b(b) \cdot \square=\langle b \cdot b\rangle
$$

Thus, if we think of $2 T$ as defining a Riemannian metric on the configuration space
1-form on the manifold M since p_{i} is not a function on M !)
(Note that the most general 1-form on $T^{*} M$ is locally of the form $\sum_{i} a_{i}(q, p) d q$
Theorem (2.33): There is a globally defined 1-form on every cotangent bundle
$T^{*} M^{n}$, the Poincaré 1-form λ. In local coordinates (q, p) it is given by
manifold $T^{*} M^{n}$, not M.
This will be a linear functional defined on each tangent vector to the $2 n$-dimension Poincaré, that there is a well-defined 1 -form field on every cotangent bundle T^{*} Recall that " 1 -form" is simply another name for covector. We shall show, w it would also depend, say, on the specific Lagrangian or metric tensor employed. back to $T M$ by means of our identifications, but this is not only frequently awkwar objects that live naturally on $T^{*} M$, not $T M$. Of course these objects can be broug
 Since $T M$ and $T^{*} M$ are diffeomorphic, it might seem that there is no particular reas

by the kinetic energy quadratic form
We did just this in mechanics, where the metric tensor was chosen to be that defin

$$
\dot{q}^{i}=\sum g^{i j} p
$$

$$
{ }_{r}!8=?
$$

coordinate patch (q, \dot{q}) to the coordinate patch (q, p) by mannian manifold, we may define a diffeomorphism $T M^{n} \rightarrow T^{*} M^{n}$ that sends dependent of mechanics. They are distinct geometric objects. If, however, M is a Ri
 are indeed what everyone calls the momenta of the two particles

> with inverse

$$
p_{1}=m_{1} \dot{q}^{1} \quad \text { and }
$$

swejqo.d

$$
\text { with a powerful tool that is not available on } T M \text {. }
$$

 As we shall see when we discuss mechanics, the presence of the Poincaré 1-form field

$(b p)_{*} L^{!} d \stackrel{!}{\zeta}=\left(b p^{!} d \frac{!}{3}\right) * \Perp$

 dinates (q) for M and (q, p) for $T^{*} M$ the map π is simply $\pi(q, p)=(q)$. The point Let us check that these two definitions are indeed the same. In terms of local coora 1 -form at each point of $\pi^{-1}(x)$, in particular at $A . \lambda$ at A is precisely this form $\pi^{*} \alpha$! in $T^{*} M$, to the point x at which the form α is located. Then the pull-back $\pi^{*} \alpha$ defines 1 -form α at a point $x \in M$. Let $\pi: T^{*} M^{n} \rightarrow M^{n}$ be the projection that takes a point A coordinates. Let A be a point in $T^{*} M$; we shall define the 1 -form λ at A. A represents a
There is a simple intrinsic definition of the form λ, that is, a definition not using
But from (2.21), q^{\prime} is independent of p, and the second sum vanishes. Thus

$\left\{c d p\left(\frac{l d \rho}{b \varrho}\right)+{ }_{l} b p\left(\frac{c b \varphi}{b \varrho}\right)\right\} \zeta={ }_{y} b p$

 defined. Then coordinate changes of the form (2.21), for that is how the cotangent bundle was nate patches of $T^{*} M$. Let $\left(q^{\prime}, p^{\prime}\right)$ be a second patch. We may restrict ourselves to proof: We need only show that λ is well defined on an overlap of local coordi-We need a systematic notation for indices. Instead of writing i, j, \ldots, k, we sha
write i_{1}, \ldots, i_{p}.
In components, we have, by multilinearity,

$$
m_{1} \cdot!8 \overparen{\frac{n}{2}}=\left\langle M^{\prime} \Lambda\right\rangle=\left(M^{\prime} \mathrm{A}\right)_{D}
$$ the components of the vectors are expressed

$$
\text { is the metric tensor } G \text {, introduced in } 2.1 \mathrm{c} \text { : }
$$

 is clearly bilinear (and is assumed independent of basis).
is called bilinear, and so forth. Probably the most important covariant second-rank tens A covariant vector is a covariant tensor of rank 1 . When $r=2$, a multilinear functio

We emphasize that the values of this function must be independent of the basis in whic
of r-tuples of vectors, multilinear meaning that the function $Q\left(v_{1}\right.$,
linear in each entry provided that the remaining entries are held fixed

$$
Q: E \times E \times \cdots \times E \rightarrow \mathbb{R}
$$

of r-tuples of vectors, multilinear meaning that the f
Definition: A covariant tensor of rank r is a multilinear real-valued function
remembered, however, that most of our constructions are simply linear algebra. E by $\partial=\left(\partial_{1}, \ldots, \partial_{n}\right)$, with dual basis $\sigma=d x=\left(d x^{1}, \ldots, d x^{n}\right)$. It should vectors to a manifold at a point $x \in E$. Consequently we shall denote a basis e E. Almost all of our applications will involve the vector space $E=M_{x}^{n}$ of tangen In this paragraph we shall again be concerned with linear algebra of a vector spac

89
(2)

SHOSUOL ${ }^{\circ}{ }^{\circ}$

 (iii) Is $\sum \dot{q}^{j} \partial / \partial \dot{q}^{j}$ well defined?
(ii) Is the locally defined vector field $\sum_{i} \dot{q}^{j} \partial / \partial q^{j}$ well defined on all of $T M$?
be/e pue be/e
(i) Show that under a change of coordinates in $M, \partial / \partial q$ depends on both
$T: E^{*} \times E^{*} \times \cdots \times E^{*} \rightarrow \mathbb{R}$

$(\mathrm{A}) \mathrm{D}=:(x) \mathbf{A}$
Note first that a contravariant vector, that is, an element of E, can be considered as a
linear functional on covectors by defining

$$
\alpha \otimes \beta: E \times E \rightarrow \mathbb{R}
$$

> $\left(a_{i} b_{j}\right)$, where $i, j=1, \ldots, n$, form the components of $\alpha \otimes \beta$. See Problem 2.4 (1) at ${ }^{\prime} q \cdot p=(!Q) g(!Q) x=\left(!Q{ }^{\prime!} Q\right) g \otimes x=!!(g \otimes x)$

$$
\alpha \otimes \beta(\mathbf{v}, \mathbf{w}):=\alpha(\mathbf{v}) \beta(\mathbf{w})
$$

In components, $\alpha=a_{i} d x^{i}$ and $\beta=b_{j} d x^{j}$, and from (2.34
If α and β are covectors, that is, elements of E^{*}, we can form the second-rank

$$
\otimes_{*} 马 \otimes \otimes_{*}
$$

n^{r}. This vector space is the space of covariant $r^{\text {th }}$ rank tensors and will be denoted by the components by real numbers. The number of components in such a tensor is clearly These simply correspond to addition of their components $Q_{i, \ldots, j}$ and multiplication of operations of addition of functions and multiplication of functions by real numbers The collection of all covariant tensors of rank r forms a vector space under the usual

in a matrix $A=\left(a_{j}^{i}\right), a_{i}^{i}=\sum_{i} a_{i}{ }_{i}$ is the trace of the matrix. With this convention we
can write appears as both an upper (contravariant) and a lower (covariant) index. For example, tion. In any single term involving indices, a summation is implied over any index that We now introduce a very useful notational device, the Einstein summation conven-

$$
\begin{aligned}
& \text { As for cova } \\
& \alpha_{1}, \ldots, \alpha_{s} \\
& \text { where }
\end{aligned}
$$

S.osuriL paxin $\cdot \supset \not{ }^{\circ} \mathrm{Z}$

 $q^{!} p_{!!} 8=\left(g^{\prime} x\right)_{1-D}$We write for this space of contravariant tensors

$$
\begin{aligned}
& \text { of a second-rank contravariant tensor is the inverse to the metric tensor } G^{-1} \text {, wit } \\
& \text { components }\left(g^{i j}\right) \text {. }
\end{aligned}
$$

The following definition in fact includes that of covariant and contravariant tensors
special cases when r or $s=0$.
Definition: A mixed tensor, r times covariant and s times contravariant, is a
real multilinear function W

$$
W: E^{*} \times E^{*} \times \cdots \times E^{*} \times E \times E \times \cdots \times E \rightarrow \mathbb{R}
$$

on s-tuples of covectors and r-tuples of vectors.
By multilinearity

$$
W\left(\alpha_{1}, \ldots, \alpha_{s}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)=a_{1 i_{1}} \ldots a_{s i_{s}} W^{i_{1} \ldots i_{s}} j_{j_{1} \ldots j_{r}} v_{1}^{j_{1}} \ldots v_{r}^{j_{r}}
$$

where

$$
G=g_{i j} d x^{i} \otimes d x^{j} \quad \text { and } \quad G^{-1}=g^{i j} \partial_{i} \otimes \delta
$$

tensor with components $(\mathbf{v} \otimes w)^{i j}=v^{i} w^{j}$. As in Problem 2.4 (1) we may then write in the same manner as we did for covariant vectors. It is the second-rank contravaria

Given a pair \mathbf{v}, \mathbf{w} of contravariant vectors, we can form their tensor product $\mathbf{v} \otimes$
then $G^{-1}(\alpha, \beta)=g^{i} a_{i} b_{j}=a_{i} b^{i}=\alpha(\mathbf{b})$ is indeed independent of coordinates, a
G^{-1} is a tensor. independent since $\beta(\mathbf{v})=\langle\mathbf{v}, \mathbf{b}\rangle$, and the metric \langle,$\rangle is coordinate-independent. Bu$ coordinate expressions of α and β ? Note that the vector \mathbf{b} associated to β is coordinate $G^{-1}(\alpha, \beta)$ given is certainly bilinear, but are the values really independent of th (see 2.1 c). Does the matrix $g^{i j}$ really define a tensor G^{-1} ? The local expression fo

$$
\text { components }\left(g^{i j}\right),
$$

As for covariant tensors, we can show immediately that for an s-tuple of 1 -form
TENSORS AND EXTERIOR FORMS

$$
E \otimes E \otimes \cdots \otimes E:=\otimes^{r} E
$$

general its components differ from those of the mixed tensor, but they coincide when is the matrix of the covariant bilinear form associated to the linear transformation \mathbf{A}. In


```
4,
```

of the metric tensor." In tensor analysis one uses the same letter; that is, instead of A^{\prime} Thus $A_{i k}^{\prime}=g_{i j} A^{j}{ }_{k}$. Note that we have "lowered the index j, making it a k, by means

$$
m^{y}{ }^{y} V^{f 18}, a=\left\langle\mathbf{M} \mathbf{V}^{‘} \mathbf{A}\right\rangle=:\left(\mathbf{M}^{\prime} \mathbf{A}\right), V
$$

 there is usually written $A_{i j}$ and they make no distinction between linear transformations confusion in elementary linear algebra arises since the matrix of a linear transformation and only the last is the matrix of a linear transformation $\mathbf{A}: E \rightarrow E$. A point of

$$
q^{l} v_{!!} V \text { pue } \quad!_{!}^{m} a^{!!} V
$$

first two define bilinear forms (on E and E^{*}, respectively) Note that we have written matrices A in three different ways, $A_{i j}, A^{i j}$, and $A^{i}{ }_{j}$. The if әs.noo јo are sıuәuoduoo st! pue $x p \otimes!e=I$

$x p!{ }_{!} \forall \otimes!e={ }_{!} x p \otimes!Q^{!}{ }_{!} V=\mathbf{V}$

$(\mathrm{A}) \phi(\mathbf{A}) x=\left(\mathbf{A}^{\prime} x\right)\left(g^{\prime} \otimes \mathbf{M}\right)$

(I) t'z แәןqoud u! sV

The tensor product $\mathbf{w} \otimes \beta$ of a vector and a covector is the mixed tensor defined by

$$
a \forall D=a_{!}^{!}{ }_{!} V^{\prime} b=\left(\Lambda^{\prime} x\right) M
$$

> Note that in components the bilinear form has a pleasant matrix expression mixed tensor with components $\left(A_{j}^{i}\right)$ ransformation \mathbf{A} and its associated mixed tensor W_{A}; a linear transformation A is a an \mathbf{A} exists since $W(\alpha, v)$ is linear in v. We shall not distinguish between a linear
 tensor W, once covariant and once contravariant, we can define a linear transformation

$$
W_{A}^{i}{ }_{j}=W_{A}\left(d x^{i}, \partial_{j}\right)=d x^{i}\left(\mathbf{A}\left(\partial_{j}\right)\right)=d x^{i}\left(\partial_{k} A_{j}^{k}\right)=\delta_{k}^{i} A_{j}^{k}=A^{i}
$$

> $\mathbf{A}\left(\partial_{j}\right)=\partial_{i} A_{j}^{i}$. The components of W_{A} are given by

we solve the secular equation $\operatorname{det}(Q-\lambda I)=0$, but the point is that the solution course we can solve the linear equations $Q_{i j} v^{j}=\lambda v^{i}$ as in linear algebra; that i is a covariant index on the left whereas it is a contravariant index on the right. our notation; $Q_{i j} v^{j}=\lambda v^{i}$ makes no sense si Wa by the law (2.41a). This is a convenient terminology generalizing (2.1). of "components" $W^{i \ldots . j}{ }_{k \ldots l}$ such that under a change of basis the components transfo components. They would say that a mixed tensor assigns, to each basis of E, a collectio

 linearity, Under a change of bases, $\partial^{\prime}{ }_{l}=\partial_{s}\left(\partial x^{s} / \partial x^{\prime l}\right)$ and $d x^{\prime i}=\left(\partial x^{i} / \partial x^{c}\right) d x^{c}$ we have,

$$
W^{i \ldots j}{ }_{k \cdots l}=W\left(d x^{i}, \ldots, d x^{j}, \partial_{k}, \ldots, \partial_{l}\right)
$$

 ven by As we have seen, a mixed tensor W has components (with respect to a basis ∂ of from E to E^{*}, sending the vector with components v^{j} into the covector with componen linear transformation of E into itself. However, it does represent a linear transformatio
from E to E^{*}, sending the vector with components v^{j} into the covector with componen A final remark. The metric tensor $\left\{g_{i j}\right\}$, being a covariant tensor, does not represent of whether the index is up or down. the left-most index denotes the row and the right-most index the column, independen Recall that the components of a second-rank tensor always form a matrix such th

$$
y_{y!}^{8!} V={ }_{y!} V
$$

UЮПI.M аq p[nom sluouoduro jo xinpui osoum
 bilinear form

In a similar manner one may associate to the linear transformation \mathbf{A} a contravaria elementary linear algebra, they may dispense with the distinction. the basis is orthonormal, $g_{i j}=\delta_{j}^{i}$. Since orthonormal bases are almost always used tensors and exterior forms
more extensively later on, after we have developed the appropriate tools. We shall illustrate this point with a far simpler example; this example will be dealt with
 tensor, perhaps of higher rank. In the Newtonian case the field is described by a scalar "agree," we mean, presumably, that the strengths will again be components of some
 and agree on the strength of the gravitational field, and this will involve derivatives
 systems, the two sets of components $g_{i j}$ and $g_{i j}^{\prime}$ will be related by the transformation (Einstein's discovery), although two observers will find different components in their nate system. Since the metric of space-time is assumed to have physical significance clocks," each observer can in principle measure the components $g_{i j}$ for their coordiuse different local coordinates in 4-space. By making measurements with "rulers and field by the scalar Newtonian potential function ϕ.) Different observers will usually to be discussed in Chapter 11. (This is similar to describing the Newtonian gravitational that the metric tensor $\left(g_{i j}\right)$ in 4-dimensional space-time describes the gravitational field,
 meaning that all coordinate systems will agree upon. expressions by using local coordinates, yet we wish our expressions to have an intrinsic Tensors are important on manifolds because we are frequently required to construct
 A (differentiable) tensor field on a manifold has components that vary differentiably

respect to the given metric g. This situation arises in the problems of small oscillations
of a mechanical system; see Problem 2.4(4). notation. We may call these eigenvalues λ the eigenvalues of the quadratic form with It is easy to see that this equation is independent of basis, as is clear also from our

$0=(\delta \gamma-\widetilde{O}) \nLeftarrow p$

$a^{1!8}=a^{!!} 0$

$g^{i j} Q_{j k}=W^{i}{ }_{k}$ and then find the eigenvalues of this W. This is equivalent to solving
 to talk about the eigenvalues or eigenvectors of a quadratic form. Of course if we an invariant equation $\operatorname{det}\left(W^{\prime}-\lambda I\right)=\operatorname{det}(W-\lambda I)$.) It thus makes no intrinsic sense (In the case of a mixed tensor W, the transpose T is replaced by the inverse, yielding and the solutions of $\operatorname{det}\left[Q^{\prime}-\lambda I\right]=0$ in general differ from those of $\operatorname{det}[Q-\lambda I]=0$.

$\left(\frac{x \rho}{x \rho}\right) \delta\left(\frac{x \rho}{x \rho}\right)$

 $Q_{i j}^{\prime}=\left(\partial x^{k} / \partial x^{\prime i}\right) Q_{k t}\left(\partial x^{l} / \partial x^{\prime j}\right)$. Thus we have depend on the basis used. Under a change of basis, the transformation rule (2.41b) sayseralizing (2.42). "exterior calculus," that will allow us systematically to generate "field strengths" Our next immediate task will be the construction of a mathematical machin of coordinates. In our electromagnetic case, ($F_{i j}$) is the field strength tensor. that is, on orthogonal changes of coordinates. For the present we shall allow all cha coordinate systems; a cartesian tensor is one based on cartesian coordinate syst talk about objects that transform as tensors with respect to some restricted cla changes of coordinates, $x^{i i}=L_{j}^{i} x^{j}$, then $\partial_{i} A_{j}$ would transform as a tensor. One Note that he term in brackets $\left[J\right.$ is what prevents $\partial_{i} A_{j}$ itself from defining a
sor. Note also that if our manifold were \mathbb{R}^{n} and if we restricted ourselves to $l i$

$$
\left({ }^{(} V^{d} \mathrm{e}-{ }^{I} \mathrm{~V}^{\prime} \mathrm{e}\right)\left(x^{x} ;(e)\left(x_{1}^{\prime}, Q\right)=\right.
$$

is a covector, we have $A_{j}^{\prime}=\left(\partial_{j}^{\prime} x^{l}\right) A_{l}$ and so
 proor: We need only verify the transformation law in (2.42). Since $\alpha=A_{j} d$

form the components of a second-rank covariant tensor.
 \section*{\section*{uau
 \section*{\section*{uau

 }
 do not form the components of a second-rank tensor!} $V^{!} ?$
clear from the following calculation that the expressions of a vector field (see 2.1 d). As you will learn in Problem 2.4(3), there is good

$$
{ }^{l} V^{f} P-I_{V}^{\prime} e=: V_{I}
$$

$$
{ }^{4} \|_{1}\left(x_{1}^{\prime}, e\right)\left(x_{I} x^{\prime}, e\right)=
$$ The electromagnetic field strength will involve derivatives of the A 's, but it w In the following we shall use the popular notations $\partial_{i} \phi$

$\partial \phi / \partial x^{i}$
 space there are differences in the components of the covariant and contravariant ver the texts whether the vector is contravariant or covariant; recall that even in Mink locally by a "vector potential," that is, by some vector field. It is not usually cle

[^0]: plane

[^1]: We require that each $\phi_{U}(U \cap V)$ be an open subset of \mathbb{R}^{n}. We require that the overlap
 Ne requir

